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Topics of this Presentation

»Fundamental Law of Modal Analysis (FLMA): All vibration is a summation of
mode shapes

» FEA mode shapes will be used to “decompose” and then "expand" experimental
data to include DOFs that were not experimentally acquired

» Only FEA mode shapes will be used, not their frequency or damping

»Mode shapes from an FEA model with free-free boundary conditions and no
damping will be used
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What is a Mode of Vibration?

» A mode of vibration is a mathematical representation of a structural resonance
» Any structure made out of elastic materials will exhibit resonant vibration

»When dynamic forces are applied and energy is trapped within the boundaries of a
structure, it will resonate

»When energy is trapped within the material boundaries of a structure, it causes a
“standing wave deformation”. This is called a mode shape

»Some modes will readily absorb energy causing a structure to resonate

» A structure in resonant vibration can be thought of as a mechanical amplifier. A small
dynamic load can cause excessive deformation
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Two Ways to Create Mode Shapes

» Experimental Modal Analysis (EMA): EMA mode shapes are obtained by curve
fitting a set of experimentally derived time waveforms or frequency spectra that
characterize the structural dynamics

» Finite Element Analysis (FEA): FEA mode shapes are obtained as the eigensolution
of a set of differential equations that characterize the structural dynamics

> Both EMA & FEA are based upon FLMA
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Two Ways to Create Mode Shapes

Analytical \

Differential Equations

M %(t) + C x(t) + K x(t) = f{t)

Fourier Transform

System Matrix

Eigensolution Modal
[ M@2+ C @ + K] X() = F{o) ™ parameters

Matrix inverse J
Y
FRF Matrix Curve Fit Modal
X(®) = [ H(o)] F(®) Parameters
Fourier Transform
Impulse Responses Curve Fi - Modal
[I] Parameters
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Modal Testing

» All dynamic response data is acquired as a time

waveform
Log Magnitude of an FRF
» Without loss of information, the FFT transforms each mnde#1\.
time waveform into its corresponding Fourier spectrum mﬁﬂﬁs
» An Auto spectrum, Cross spectrum, FRF, ODS FRF, or - ) /y

Transmissibility is calculated froma Fourier spectrum
response

\Y
//&N
» All modal testing is based on FLMA “Tput | %?‘“‘x\m

e

» All vibration data is a summation of resonance curves, frequency
each curve due to a mode of vibration
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Curve Fitting

Vibrating Beam

» Multiple time waveforms or frequency spectra are
needed to define EMA mode shapes

» Each mode is defined with three parameters Measurement

 Modal frequency

(the frequency of a resonance peak)

* Modal damping

(the width of a resonance peak)

* Mode shape

(the magnitude & phase of each
Imaginary

resonance peak at the same frequency) Part of FRFs
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Expanding Experimental Data

» Two examples will illustrate FLMA

1. Order-based ODS's of a rotating machine are decomposed & expanded from
24 DOFs to 2000 DOFs

2. Sinusoidal response time waveforms of a structure are decomposed & expanded
from 99 DOFs to 315 DOFs

»In these examples only FEA normal mode shapes are used to decompose & expand
experimental data
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Example #1: Expanding a 24-DOF ODS

» Data was acquired from eight tri-axial accelerometers during operation of the
rotating machine at 985, 1440, & 2280 RPM

I"flew: 3D Vlewl
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FEA Mode Shapes of the Base Plate & Bearing Blocks

» Six Rigid Body and four Flexible Body mode shapes were used to decompose & expand
the ODS data
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FEA Mode Shape Participation in the ODS at 985, 1440, & 2280 RPM

» Each ODS is complex valued. The FEA mode shapes are normal (real valued) mode shapes
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as a summation of FEA normal mode shapes

FEA Mode Shape Participation in the ODS at 985 RPM

» The high SDI value verifies that a complex valued ODS is accurately represented
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FEA Mode Shape Participation in the ODS at 1440 RPM

» The high SDI value verifies that a complex valued ODS is accurately represented

as a summation of FEA normal mode shapes
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FEA Mode Shape Participation in the ODS at 2280 RPM

» The high SDI value verifies that a complex valued ODS is accurately represented
as a summation of FEA normal mode shapes
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Example #2: Expanding Sinusoidal Response Time Waveforms
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EMA & FEA Mode Shapes

» EMA mode shapes with 99 DOFs, FEA mode shapes with 315 DOFs
» High MAC values indicate strong co-linearity between EMA & FEA mode shapes
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Two Sinusoidal Excitation Cases were Simulated

1. Two 500 Hz In-Phase sinusoidal excitation forces

2. Two 500 Hz Out-of-Phase sinusoidal excitation forces
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Responses to In-Phase & Out-of-Phase Excitation

» High MAC values indicate strong co-linearity between EMA & FEA sinusoidal
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Mode Shape Participation - In-Phase & Out-of-Phase Excitation
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Correlation Between EMA-Based & FEA-Expanded Responses
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Summary

»Fundamental Law of Modal Analysis (FLMA): All vibration is a summation of
mode shapes

» FEA mode shapes were used to “decompose” and then "expand" experimental
data to include DOFs that were not experimentally acquired

» Only FEA mode shapes were used, not their frequency or damping

»Mode shapes from an FEA model with free-free boundary conditions and no
damping were used

» Complex experimental data which includes real-world boundary conditions and
real-world damping can be decomposed & expanded using FEA normal mode
shapes
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