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ABSTRACT 
The vibration parameters of a structure are typically de-
rived from acquired time domain signals, or from frequency 
domain functions that are computed from acquired time do-
main signals.  For example, the modal parameters of a 
structure can be obtained by curve fitting a set of frequency 
response functions (FRFs), or by curve fitting a set of (time 
domain) impulse response functions.  Similarly, the operat-
ing deflection shapes of a structure can be obtained either 
from a set of time domain responses, or from a set of fre-
quency domain responses. 

Two of the most commonly asked questions about vibration 
are: 

1. What is the deformation (deflection shape) of a ma-
chine or structure under a particular operating condi-
tion? 

2. How much is the machine or structure actually moving 
at certain points? 

Time domain responses can be used to answer both of these 
questions, for linear as well as non-linear vibration.  On the 
other hand, frequency domain responses can be used to 
answer these questions for specific frequencies. 

NOMENCLATURE 
t = time variable (seconds). 
ω = frequency variable (radians/second). 
n = number of measured DOFs. 
m = number of modes. 
[M] = (n by n) mass matrix (force/unit of acceleration). 
{x''(t)} = acceleration response n-vector. 
[C] = (n by n) damping matrix (force/unit of velocity). 
{x'(t)} = velocity response n-vector. 
[K] = (n by n) stiffness matrix (force/unit of displacement). 
{x(t)} = displacement response n-vector. 
{f(t)} = excitation force n-vector. 
{X(jω)} = discrete Fourier transform of the displacement 
response n-vector. 
{F(jω)} = discrete Fourier transform of the excitation force 
n-vector. 

[H(jω)] = (n by n) Frequency Response Function (FRF) 
matrix. 
{xf(t)} = forced response n-vector. 

{uk} = complex mode shape (n-vector) for the kth mode. 

pk  = pole location for the kth mode = - σk + jωk 

σk = damping of the kth mode (radians/second). 

ωk = frequency of the kth mode (radians/second). 

Ak = a non-zero scaling constant for the kth mode. 

[Rk]  = the (n by n) residue matrix for the kth mode  

 = Ak{uk}{uk}tr 

tr - denotes the transpose. 
* - denotes the complex conjugate. 

INTRODUCTION 
The vibration parameters of a structure are typically derived 
from acquired time domain signals, or from frequency do-
main functions that are computed from acquired time sig-
nals.  Using a modern multichannel data acquisition system, 
the vibration response of a structure is measured for multi-
ple points and directions (DOFs) with motion sensing trans-
ducers.  Signals from the sensors are then amplified, digit-
ized, and stored in the system's memory as blocks of data, 
one data block for each measured DOF of the structure.  A 
key requirement of the multichannel system is that it be able 
to simultaneously sample or digitize the vibration signals as 
it converts them from analog signals (voltages) to digital 
data (numbers). 

If the acquisition system is also an FFT-based system (an 
FFT Analyzer), then one additional requirement must be 
met in order to compute valid frequency domain functions.  
To prevent aliasing (false frequencies in their frequency 
spectra) the frequency content of the time domain signals 
must be bounded to satisfy the Nyquist criterion.  That is, 
the maximum frequency in the analog signals cannot ex-
ceed one half of the sampling frequency used to digitize 
them. 
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There are two ways to meet this criterion; digitize the time 
domain signals at a very high sampling rate (twice the high-
est expected frequency in the signals), or band limit the time 
domain signals with filters.  Since the time signals must be 
frequency limited before they are digitized, they must be 
filtered as analog signals using analog filters.  In a multi-
channel system, all of the anti-aliasing filters must filter all 
channels in the same way, and this usually adds to the cost 
of the system. 

Having acquired either a set of sampled time domain re-
sponses, or computed (via the FFT) a set of frequency do-
main responses, an operating deflection shape is defined as: 

Operating Deflection Shape:  The values of a set of simul-
taneously sampled time domain responses at a specific time, 
or the values of a set of frequency domain responses at a 
specific frequency. 

Operating Deflection Shapes versus Mode Shapes 
The vibration response of a structure depends on both the 
amount and the location of its excitation.  Therefore its op-
erating deflection shapes always depend on its excitation 
source(s).  On the other hand, the mode shapes of a struc-
ture do not depend on either the amount or location of its 
excitation.  That is, they are natural properties of the struc-
ture, and will not change unless its physical properties 
(mass, stiffness, and damping), or its boundary conditions 
are changed. 

Mode shapes, by themselves, do not have fixed values (they 
have no units), and therefore cannot tell you how much a 
structure is actually moving.  They can only show the rela-
tive motions between two DOFs of a structure.  Using mod-
al parameters, the answer to the question, "How much ...?" 
can only be answered once the amount and location of all of 
the excitation forces is specified.  Then, modal parameters 
can be used to synthesize an operating deflection shape. 

But, what if the amount and location of all of the excitations 
cannot be identified, or are too complex to identify?  Then, 
direct measurement of the operating deflection shape is the 
only way to answer the question, "How much ...?" 

Since many vibration problems involve the excitation of 
modes (or resonances), operating deflection shapes and 
mode shapes must be closely related to one another, and 
indeed they are.  In the following section, this relationship 
is examined in more detail. 

THEORETICAL BACKGROUND 
Since an operating deflection shape is defined simply as the 
response of a structure at a specific time or frequency, no 
assumption is made regarding the linearity of the structure's 
response.  However, many vibration problems in structures 
involve the excitation of modes, which are only defined for 
linear systems.  Furthermore, since the FFT is a linear trans-
formation, it is much more profitable to begin the analysis 

of a vibration problem by assuming that the structure is be-
having in a linear (or near linear) manner.  Then, both time 
and frequency domain techniques can be used. 

The equation of motion for a vibrating structure is common-
ly derived by applying Newton's second law to all of the 
DOFs of interest on the structure.  In an experimental situa-
tion, this results in a countable set of equations, one for each 
measured DOF: 

[M] {x''(t)} + [C] {x'(t)} + [K] {x(t)} = {f(t)} (1) 

Notice that the excitation forces and responses are functions 
of time (t), and that the coefficient matrices [M], [C], and 
[K] are constants.  This is a dynamic model for describing 
the vibration of a linear, time invariant structure. 

The Fourier Transform 
The Fourier transform is defined for continuous signals.  
The analogous discrete Fourier transform (DFT) is defined 
for discrete (sampled) signals.  The FFT algorithm performs 
the DFT on a finite number of samples of time domain data.  
More specifically, the FFT transforms (N) samples of real 
valued time domain data into (N/2) samples of complex 
valued frequency domain data.  Likewise, the Inverse FFT 
converts (N/2) samples of complex valued frequency do-
main into (N) samples of real time domain data.  (For prac-
tical reasons, the number of samples (N) is usually restrict-
ed to an integer power of 2.) 

When initial conditions are ignored, the equivalent frequen-
cy domain form of the dynamic model for a structure can be 
represented in terms of discrete Fourier transforms: 

{X(jω)} = [H(jω)] {F(jω)} (2) 

This equation is valid for all discrete frequency values for 
which the discrete Fourier transforms are computed.  Taking 

the inverse FFT (FFT-1 ) of the above equation yields the 
forced response equation for the structure.  (For a fixed 
value of time (t),  the forced response vector {xf(t)} is the 

operating deflection shape.) 

{xf(t)} = FFT-1 {[H(jω)] {F(jω)}} (3) 
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Figure 1. An FRF Measurement. 

Several conclusions can be drawn from the forced response 
equation: 

• The Fourier transform of the forced response is made 
up of a summation of the transforms of all of the exci-
tation forces times the columns of the FRF correspond-
ing to the excitation DOFs. 

• The unit Impulse Response of the structure is obtained 
by setting one of the elements of the transformed exci-
tation vector {F(jω)} equal to one (1), since the Fourier 
transform of a unit impulse is one for all frequencies.  
From the forced response equation, an n-vector of im-
pulse responses is obtained by inverse Fourier trans-
forming one of the columns of the FRF matrix, the col-
umn corresponding to the DOF where the impulse is 
applied.  This column is also called the reference col-
umn. 

• The impulse response of the structure depends on 
where the impulsive force is applied, which certainly 
serves our intuition. 

• The Sinusoidal Response of the structure to a single 
sinusoidal excitation is obtained by inverse Fourier 
transforming the values of the reference (excitation) 
column of the FRF matrix, at the sinusoidal frequency.  
This is so because the Fourier transform of a sine wave 
signal is non-zero at the sine frequency, and zero for all 
other frequencies.  The forced response equation also 
shows that for sine excitation, the operating deflection 
shape is merely the values of the FRFs from the refer-
ence column, at the excitation frequency. 

• The forced response, (and hence the operating deflec-
tion shape), is completely arbitrary, depending on the 
combination of excitation forces acting on the structure. 

Modal Parameters 
If it is further assumed that reciprocity is valid for the test 
structure, (the [M], [C], and [K] matrices are symmetric), 
then the FRF matrix can be represented completely in terms 
of the modal parameters of the structure.  Using superposi-

tion, the FRF matrix can be represented as a summation of 
terms, each term due to the contribution of a single mode of 
vibration: 

[H(jω)] = [H1(jω)] + [H2(jω)] +...+ [Hk(jω)] +...+  

[Hm(jω)] 

where: 

[Hk(jω)]  = Ak{uk}{uk}tr/(jω - pk)  (4) 

 + A*k{u*k}{u*k}tr/(jω - p*k) 

Notice that each term of the FRF matrix is represented in 
terms of a pole location and a mode shape.  Notice also that 
all the numerators are simply constants, and that only the 
denominators are functions of frequency.  The numerators 
are also called residues.  Each term of the FRF matrix can 
also be represented in terms of poles and residues: 

[Hk(jω)] = [Rk] / (jω - pk) + [R*k] / (jω - p*k) (5) 

where: 

[Rk]  = the (n by n) residue matrix for the kth mode  

 = Ak{uk}{uk}tr 

Again, it's worth noting that the numerators (residues) of an 
FRF are merely constants, fixed in value.  The mode shapes 
are eigenvectors;  that is, they can change in value, but not 
in shape.  The denominators are functions of frequency, and 
cause the peaks in an FRF.  The locations of the peaks are 
dictated by the pole locations (pk).  Each peak in the FRF is 
evidence of at least one pole, or mode, or resonant condi-
tion.  A typical FRF measurement (one element of the FRF 
matrix) is shown in Figure 1. 

Forced Response in Terms of Modes 
Several more conclusions can be drawn by substituting the 
modal parametric form of the FRF matrix into the forced 
response equation: 

• Every element of the FRF matrix (between any pair of 
DOFs) is a summation of contributions from all of the 
modes of the structure.  Therefore, the forced response 
potentially contains contributions from all of the 
modes. 

• The operating deflection shape depends not only on the 
excitation forces, but also on the locations of the poles 
(resonant peak frequencies) and the structure's mode 
shapes. 

• If an excitation force puts energy into a structure near a 
resonant peak frequency, the operating deflection shape 
could be very large, depending on the value of the 
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modal residue between the excitation and response 
DOFs. 

• The modal residue between an excitation DOF and a 
response DOF is the product of the two mode shape 
components corresponding to the two DOFs.  If either 
of the mode shape components is zero (on a nodal line 
of the shape), the mode will not contribute to the oper-
ating deflection shape. 

The mathematics predicts what every vibration engineer 
knows from experience; namely, if either the excitation or 
response DOF is on a nodal line of a mode shape, that 
mode will not contribute to the operating deflection shape. 

Impulse Response in Terms of Modes 
Since the Fourier transform of the unit impulse response is 
one (1) for all frequencies, the impulse response n-vector 
due to an impulse applied at DOF(i) can also be written in 
terms of modal parameters: 

{Imi(t)} = FFT-1 {[H(jω)] {1i}} 

 = {Imi,1(t)} + {Imi,2(t)} +..+ {Imi,k(t)} 
 +..+{Imi,m(t)} 

where: 

{1i} = n-vector with one (1) in the ith element, zero  else-
where. 

{Imi,k(t)} = {Ri,k e
-σkt sine( ωkt + αi,k)} 

 = response of the kth mode, due to 
 an impulse applied at DOF(i). 

{Ri,k}  = ith column of the residue matrix for the 

 kth mode. 

 = {Ri,k e
α

i,kt } in polar form. 

e-σkt = exponential decay envelope due to damping 

 of the kth mode. 

sine( ωkt + αi,k) = sinusoidal response at the 

frequency of the kth mode. 

This parametric form shows that the overall response of the 
structure to an impulse is the summation of the impulse 
responses of each of its modes.  Each modal contribution is 
a damped sinusoidal response, with the oscillation frequen-
cy equal to the mode's natural frequency, and the decay en-
velope controlled by the mode's damping. 
 

Inverse
FFT

 
Figure 2. FRF Measurements and Corresponding Impulse Responses. 

 
OPERATING DEFLECTION SHAPES FROM TIME 
DOMAIN FUNCTIONS 
The operating deflection shape can be obtained directly 
from measured time domain responses of a structure, or 
from frequency domain measurements that have been in-
verse Fourier transformed. 

Impulse Response 

A set of impulse responses can be measured directly from a 
structure by simply impacting it and simultaneously sam-
pling its responses at multiple DOFs.  This is fast and di-
rect testing method but requires a lot of simultaneously 
sampling acquisition channels if responses for a lot of 
DOFs are desired. 
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Alternatively, a set of impulse responses can be obtained 
by inverse Fourier transforming a set of FRF measure-
ments.  This second approach requires less equipment than 
the first approach because the FRF measurements don't 
have to be measured simultaneously.  Only a 2 channel 
analyzer is required to make an FRF measurement.  Since 
an FRF is a "normalized" measurement, computed, in ef-
fect, by dividing the transformed response by the trans-
formed excitation, a set of FRFs can be measured one at a 
time.  Hence, the requirement that all of the response sig-
nals be simultaneously sampled is relaxed.  FRFs are typi-
cally measured one at a time during impact testing of a 
structure to obtain its modal properties. 

Units of the Impulse Response 
The units of an impulse response depend on whether it was 
acquired directly from the structure, or was computed by 
inverse Fourier transforming an FRF.  If the impulse re-
sponse was measured directly, and was calibrated, the re-
sponse units are those of the vibration sensor; acceleration, 
velocity or displacement. 

If the impulse response was obtained by inverse Fourier 
transforming an FRF, its units are acceleration, velocity, or 
displacement per unit of excitation force.  For instance, if 
the FRF was measured using an accelerometer for response 
and a load cell for excitation, the impulse response units 
are acceleration per unit of impact force at the impacting 
DOF. 

Figure 2 shows some FRF measurements, and their corre-
sponding impulse responses, computed with the Inverse 
FFT.  Figure 3 shows the mode shapes of the fundamental 
(lowest frequency) modes of a plate structure.  Figure 4 
shows 16 operating deflection shapes taken from the im-
pulse responses, for 16.1 milliseconds following the im-
pulse.  These pictures show that all of the fundamental 
modes are excited from the impact point (reference DOF) 
on the corner of the plate, which is expected. 

 

 

 

 

 
Figure 3. Mode Shapes of the Fundamental Modes. 
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reference
DOF

 
Figure 4. Operating Deflection Shape from Impulse Responses. 

 

Sinusoidal Response 
If the structure is excited by a single sinusoidal force, its 
steady state response will also be sinusoidal, regardless of 
the frequency of excitation.  However, the amplitude of the 
response will depend on whether or not a mode (resonance) 
is also excited. 

From the Theoretical Background section, we saw that in 
order to excite a mode, two conditions must be met: 

• The excitation force must be applied at a DOF which is 
not on a nodal line of the mode shape. 

• The excitation frequency must be "close" to the reso-
nant peak frequency of the mode. 

If both of these conditions are met, the mode will act as a 
"mechanical amplifier" and greatly increase the amplitude 
of response of the entire structure.  This is commonly 
called a resonance condition.  Conversely, if either condi-
tion is not met, the mode will not participate in the forced 
response of the structure. 

OPERATING DEFLECTION SHAPES FROM FRE-
QUENCY DOMAIN FUNCTIONS 
Most modern FFT-based Analyzers can compute a variety 
of frequency domain functions that can be used for deriving 
operating deflection shapes, including the Linear Spec-
trum (FFT), Auto Power Spectrum, FRF, and Transmis-
sibility.  Each of these measurement functions has certain 
advantages, depending on the test situation. 

When any set of frequency domain functions is used to de-
rive the operating deflection shape, the underlying assump-
tion is that the deflection shape is the response of the struc-
ture if it were excited by a single sine wave at the reference 
DOF of the set of measurements.  Frequency domain func-
tions are therefore useful for examining how a structure 
would deflect if excited at the reference DOF, at any fre-
quency within the bandwidth of the measurements. 

In the Theoretical Background section, it was shown that 
sinusoidal excitation is equivalent to selecting the FRF val-
ues at the excitation frequency, from the column of FRFs 
corresponding to the reference DOF. 

This is also true for the other types of frequency domain 
functions listed above.  In other words, any set of vibration 
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data taken from a structure is the result of applied excitation 
forces.  Whether it be operating data, caused by self excita-
tion, or data taken during a modal test, under tightly con-
trolled excitation conditions, the operating deflection shapes 
are always subject to both the amount and location of the 
excitation. 

Linear Spectrum 
This frequency domain function is simply the FFT of a 
sampled time domain function.  Phase is preserved in the 
Linear Spectrum, so in order to obtain operating deflection 
shapes from a set of Linear Spectra, the time domain signals 
must be simultaneously sampled.  Since the Linear Spec-
trum is complex valued (contains both magnitude and phase 
information), the resulting operating deflection shapes will 
also contain magnitude and phase information. 

Auto Power Spectrum 
This frequency domain function is derived by taking the 
FFT of a sampled time domain function and multiplying the 
resulting Linear Spectrum by the complex conjugate of the 
Linear Spectrum at each frequency.  Phase is not preserved 
in the Auto Power Spectrum, so a set of these measurements 
need not be obtained by simultaneously sampling all of the 
time domain responses.  Since phase is not retained in these 
measurements, operating deflection shapes derived from 
them will contain only magnitude, and no phase infor-
mation. 

FRF 
The FRF is a 2-channel measurement, involving a response 
and an excitation signal.  It can be estimated in several 
ways, depending on whether the excitation or the response 
has more measurement noise associated with it.  The most 
common calculation involves dividing the Cross Power 
Spectrum between the response and excitation signals by 
the Auto Power Spectrum of the excitation, at each frequen-
cy.  Averaging of several Cross and Auto Power Spectra 
together is also commonly done, to reduce noise.  Phase is 
preserved in the FRF, but a set of FRFs need not be ob-
tained by simultaneously sampling all of the time domain 
responses.  Each (response, excitation) pair must be simul-
taneously sampled, however. 

Since a set of FRFs contains both magnitude and phase at 
each frequency, the operating deflection shapes derived 
from a set of FRFs will also contain both magnitude and 
phase information.  The units of the operating deflection 
shapes are acceleration, velocity, or displacement per unit 
of excitation force at the reference DOF. 

Transmissibility 
Transmissibility measurements are made when the excita-
tion force(s) cannot be measured.  Transmissibility is a 2-
channel measurement like the FRF.  It is estimated in the 
same way as the FRF, but the response is "normalized" by a 
reference response signal instead of an excitation signal.  
Phase is also preserved in Transmissibility's, and a set of 
them need not be obtained by simultaneously sampling all 
of the time domain responses.  Each (response, reference 
response) pair must be simultaneously sampled, however. 

As with FRFs, a set of Transmissibility's contain both mag-
nitude and phase at each frequency, so operating deflection 
shapes derived from a set of Transmissibility's will also 
contain magnitude and phase information.  The units of the 
operating deflection shapes are response units per unit of 
response at the reference DOF. 

Figure 5 shows the operating deflection shape taken from a 
set of FRFs for the plate structure at 780 Hz,  in between the 
3rd and 4th modes.  Figure 6 shows the operating deflection 
shape for 760 Hz, close to the resonant frequency of the 3rd 
mode.    Since, the motion at this frequency is dominated by 
the mode shape of the 753 Hz mode, the operating deflec-
tion shape "looks like" the 753 Hz mode shape, but its val-
ues will be different.  Figure 7 shows the operating deflec-
tion shape for 800 Hz, close to the resonant frequency of the 
4th mode. 

 
Figure 5. Operating Deflection Shape from FRFs at 780 Hz. 

 
Figure 6. Operating Deflection Shape from FRFs at 765 Hz. 
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Figure 7. Operating Deflection Shape from FRFs at 785 Hz. 

CONCLUSIONS 
Operating deflection shapes were defined for both time and 
frequency domain functions.  Operating deflection shapes 
and mode shapes were compared, and it was shown that 
they are quite different, yet related to one another. 

• Operating deflection shapes depend on both the amount 
and the location of excitation forces on a structure, 
whether the forces are known or not.  Modes shapes do 
not depend on excitation forces, but are natural proper-
ties of a structure. 

• Operating deflection shapes show how much a structure 
is really moving.  Mode shapes have no unique value, 
so they cannot be used directly to determine how much 
a structure is moving. 

• Operating deflection shapes are functions of the modal 
properties (frequencies, damping, and mode shapes) of 
a structure.  If the amounts and locations of excitation 
forces are known, then modal properties can be used to 
synthesize operating deflection shapes.  For excitations 
close to the modal frequencies of a structure, its mode 
shapes will closely approximate its operating deflection 
shapes, but only in "shape", not in value. 

There are many other details associated with manipulation 
of time and frequency domain measurement data, in order 
to animate and compare the operating deflection shapes and 
mode shapes of a structure.  These will be presented in 
forthcoming papers. 
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