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ABSTRACT 

The Structural Dynamics Modification (SDM) algorithm is 
very useful for solving the so-called forward variational 
problem for structures.  That is, given changes in a 
structure's mass, stiffness, or damping properties, SDM 
efficiently yields the corresponding changes in its modal 
properties. 

There are several important classes of problems, however, 
that require solutions to the inverse variational problem, or 
modal sensitivity problem.  That is, given changes in a 
structure's modal properties, what corresponding changes in 
its mass, stiffness, and damping properties have taken place.  
Applications such as structural damage detection, finite 
element model updating using test data, and vibration 
suppression or control through structural modification all 
require solutions to the modal sensitivity problem. 

Unlike the forward variational problem, the modal 
sensitivity problem cannot be solved in a straightforward 
manner.  For most practical cases, its solution requires the 
inversion of a rank deficient matrix, which creates 
numerical difficulties. 

Neural networks offer promise for solving the modal 
sensitivity problem, because of their pattern recognition and 
interpolation capabilities.  In order to solve an inverse 
variational problem, however, a neural network must be 
"trained" using a set of solutions to its corresponding 
forward variational problem.  Training a neural network 
typically requires hundreds, even thousands of solution sets.  
In this paper we show how SDM can be used to train a 
neural network for solving the modal sensitivity problem.  
Because SDM only requires the modal parameters of the 
structure, which can be obtained from a modal test or a 
finite element model, this method can be applied in a wide 
variety of experimental and analytical cases. 

NOMENCLATURE 
t = time variable (seconds). 
jω = frequency variable (radians/second). 
n = number of measured DOFs. 
[M] = (n by n) mass matrix (force/unit of acceleration). 

[C] = (n by n) damping matrix (force/unit of velocity). 
[K] = (n by n) stiffness matrix(force/unit of displacement). 
[M] = [M] + [∆M] = (n by n) mass matrix of modified 

structure. 
[C] = [C] + [∆C] = (n by n) damping matrix of 

modified structure. 
[K] = [K] + [∆K] = (n by n) stiffness matrix of 

modified structure. 
[∆M] = (n by n) matrix of mass changes. 
[∆C] = (n by n) matrix of damping changes. 
[∆K] = (n by n) matrix of stiffness changes. 
{( )}x t = acceleration response n-vector. 
{ ( )}x t = velocity response n-vector. 
{ ( )}x t = displacement response n-vector. 
{ ( )}f t = excitation force n-vector. 

{X(jω)} = discrete Fourier transform of the displacement 
response n-vector. 

INTRODUCTION 

The underlying assumption of the modal sensitivity problem 
is that changes in the vibration characteristics (modal 
properties) of a structure are strongly coupled to changes in 
its physical properties.  Modal testing itself assumes that the 
structure remains in a stationary condition throughout the 
test.  That is, its modal properties must not change.  Many 
times, this condition is difficult to maintain. 

Most experimentalists have encountered mass loading 
effects during a modal test.  The apparently insignificant 
mass of the measurement transducers (e.g. accelerometers) 
causes the modal frequencies to shift as transducers are 
moved from one point to another on the structure.  
Temperature changes during the course of an all day modal 
test can also cause modal frequencies to shift. 

For all but the simplest of cases, matching boundary 
conditions between finite element analysis and modal test 
presents major difficulties.  When the boundary conditions 
prescribed in the finite element analysis cannot be 
duplicated in the laboratory, the experimental modes don't 
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match the analytical modes.  More complex physical 
changes, such as the gravitational effects on joint stiffnesses 
in spacecraft, or the complex aerodynamic interactions of 
flight flutter in aircraft, also cause changes in the structural 
modes of vibration. 

In recent years, numerous researchers have proposed 
solutions to the modal sensitivity problem.  Entire 
conferences have been held of the subject of structure 
damage detection using vibrational changes [11].  As modal 
testing has become more widespread, finite element model 
updating using modal test data has also become popular. 

Vibration problems are often caused when one or more 
modes are located too near to an operating frequency or 
excitation frequency of a machine or structure.  The 
difficulty with problems of this type is that moving one 
mode, (by adding a stiffener, for instance), also causes other 
modes to shift in frequency, thus causing a different, 
perhaps greater vibration problem.  One of our major 
expectations for this trained neural network is that it will 
find stiffness solutions that change the frequency of a 
problem mode without also causing the frequencies of other 
modes to shift to other problem areas. 

The authors have tried to solve modal sensitivity problem in 
the past, using pseudo-inverse [3]-[5], and other 
approximation methods [6], but with limited success.  
Neural networks have also been applied to this problem [7] - 
[9], but in a different manner than is described here. 

THEORETICAL BACKGROUND 

To re-state the two problems under consideration: 

Forward Variational Problem  Given changes in a 
structure's mass, stiffness, and damping properties, find the 
corresponding changes it its modal properties. 

Inverse Variational Problem  Give changes a structure's 
modal properties, find the corresponding changes in its 
mass, stiffness, and damping properties. 

If the equations of motion of the structure are stated as the 
usual statement of Newton's second law, 

[ ]{( )} [ ]{ ( )} [ ]{ ( )} { ( )}M x t C x t K x t f t+ + =  (1) 

then the solution to the forward variational problem can be 
stated as the unique solution to a matrix eigenvalue 
problem, 

[ ][ ]( ) [ }( ) [ ] { ( )} { }M j C j K X jω ω ω2 0+ + =  (2) 

Notice that the above equation contains the matrices of the 
modified structure, and that the equations are homogeneous 
(external forces are zero).  The above equation can be 
solved, either in physical space or modal space, for the 
modes of the modified structure.  Most finite element 
analysis software packages solve this problem in physical 

space.  The SDM algorithm solves it in modal space, using 
the modes of the unmodified structure instead of the 
unmodified mass, stiffness, and damping matrices [2]. 

The primary advantage, and assumption, of the SDM 
approach is that the dynamics of the unmodified structure 
can be adequately represented by relatively few of its 
fundamental (lowest frequency) modes.  The solution of the 
forward variational problem can also be considered as a 
transformation from physical space to modal space. 

Representation of structural dynamics in terms of mass, 
stiffness, and damping matrices typically requires much 
more data than a modal representation.  For example, to 
represent the dynamics of a structure with a 1000 DOF 
model using its first ten (normal) modes would require, 

(10 modes) X ( 1000 DOFs per shape + frequency + 
damping)  = 10,020 numbers. 

(The use of complex modes would approximately double 
this number).  To represent the same structure dynamically 
using real symmetric mass, stiffness, and damping matrices 
would require, 

3 matrices X ( 1000 X (1000 + 1) / 2) = 1,501,500 numbers. 

In other words, the physical model requires 150 times as 
much data as the modal model!  This comparison also 
illustrates the difficulty of solving the inverse variational 
problem, or of transforming from modal space back to 
physical space. 

Real world structures have an infinite number of degrees of 
freedom.  Therefore, to perfectly match the dynamics of a 
real structure, equation (2) would require infinite 
dimensional matrices, and would yield an infinite number of 
modes.  In practice, of course, we approximate the dynamics 
of infinite structures using finite dimensional matrices and 
finite numbers of modes. 

Nevertheless, solving the inverse variational problem, 
requires transforming from modal coordinates (with 
relatively little data), to physical coordinates (with large 
matrix representations), even for simple cases. 

Any direct solution of the inverse variational problem 
requires the inversion of the flexibility matrix (or an 
equivalent operation), to obtain the stiffness matrix [1].  
Since only a relatively small number of the modes of a real 
structure are usually known (are measured), the flexibility 
matrix will be rank deficient, and matrix inversion is 
impossible.  So, we seek a solution to the inverse variational 
problem which preserves the unique relationship between 
changes in modal and physical properties, and provides 
discrete mass, stiffness, and damping changes, instead of the 
matrices themselves. 

In the past few years, "standardized" neural network 
software has become available that can be used "right out of 
the box".  For this work, the NeuralWindows software by 
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Ward Systems Group [10] was used in a Visual Basic 
program that performed the rest of the processing necessary 
to train the network. 

To quote the NeuralWindows operating manual, "Neural 
networks excel at problem diagnosis, decision making, 
prediction, and other classifying problems where pattern 
recognition is important and precise computational answers 
are not required." 

Neural networks are made up of "neurons" arranged in 
layers.  A neuron is a simple input-output device with a 
built-in transfer function.  In a simple feed forward network, 
the output of each neuron in one layer in linked to the input 
on each neuron in the succeeding layer.  Inputs to the entire 
network are fed into the neurons in the first (input) layer.  
Outputs (answers) from the neural network are the outputs 
of the last (output) layer. 

For this application, we used a three layer network, with an 
input, an output, and a hidden layer.  Network training was 
done using the Backpropagation of errors method. 

MODAL SENSITIVITY PROBLEM 

In structures, stiffness modifications cause modal frequency 
changes, mass modifications cause modal frequency and 
damping changes, and damping modifications cause modal 
frequency and damping changes.  In all cases, mode shapes 
may also change. 

To simplify this analysis, we will focus only on stiffness 
changes, although the method is equally valid for mass and 
damping changes.  When a local stiffness modification is 
applied to a structure, the mode shapes dictate which modes 
will "absorb" the modification, and hence be most sensitive 
to the modification.  Therefore, realizing that mode shapes 
also play a significant role in stiffness modifications, we can 
define a modal sensitivity problem as follows: 

Stiffness Sensitivity Problem 

Given a set of modal frequencies different from those of a 
baseline (unmodified) structure, find the stiffness changes 
required to yield the new modal frequencies. 

This definition indicates how the neural network should be 
setup in order to solve the problem.  Each input neuron 
represents a modal frequency of the modified structure.  
Each output neuron represents a DOF pair and will yield an 
amount of stiffness change. 

The number of input neurons should always be within a 
reasonable range, (1 to 50).  On the other hand, for large 
structure models (with hundreds of modal test points or 
finite element nodes), output neurons cannot represent all of 
the possible DOF pairs, which could range into the 
thousands.  A practical neural network size should contain 
perhaps hundreds of outputs, of DOF pairs.  This means that 
a subset of DOFs must be chosen for the neural network.  
However, this requirement is often a benefit, since most 

realistic stiffness changes can only be made between a 
subset of DOFs. 

ELIMINATING CONFLICTING TRAINING SETS 

Since we are only training the neural network with modal 
frequencies and stiffness changes, it is possible that two or 
more sets of different stiffness changes will yield the same 
set of modal frequencies.  This will always be the case when 
modification DOFs are chosen that correspond to nodal 
points (zero magnitudes) of the mode shapes involved.  If 
two training sets have different stiffness changes but the 
same modal frequencies, one of them must be eliminated. 

We used the Modal Assurance Criterion (MAC) to 
determine whether or not two sets of modal frequencies are 
the same.  MAC was developed for comparing two mode 
shapes., and is essentially a projection of one vector onto the 
other.  In this case, we simply assembled the modal 
frequencies of each training set into a vector, and applied 
MAC to all pairs of training set vectors.  Any pair of 
training sets with a MAC value above 99% was considered 
to have the same frequencies. 

Once a pair of training sets with the same frequencies is 
found, one set has to be eliminated in order to avoid 
confusing the neural network.  Another criterion must be 
used to determine which of the two sets is more desirable.  
We chose the set with the minimum stiffness metric, defined 
by: 

Stiffness Metric = SUM (Stiffness Change Magnitudes) 

This metric will eliminate all training sets that cause no 
changes in the modal frequencies,  When one of them is 
compared to the baseline training set, which has a Stiffness 
Metric = 0, it will always be less desirable than the baseline 
set. 

AN EXAMPLE 

To demonstrate this method, the 2 DOF lumped parameter 
model shown in Figure 1 was used.  This model has a closed 
form solution for modal frequencies [12]. 

 
Figure 1. 

Using this model allowed us to create training sets 
independently of SDM, and compare the training sets with 
those given by SDM. 

This model has modal frequencies: 
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 F1 = 12.355 Hz 
 F2 = 52.171 Hz 

Training Data  To train the neural network, the spring 
stiffnesses were varied over the ranges: 

 ∆K1 ∈[-12348, 12154] 

 ∆K2 ∈[-30240, 29760] 

where each stiffness change is relative to the baseline 
stiffnesses.  The neural network was trained using a total of 
10000 training sets.  Each stiffness change was varied in 
100 increments between its minimum and maximum values.  
The stiffness changes yielded frequencies in the ranges: 

 F1 ∈[ 2.51, 17.08 ] Hz 

 F2 ∈[ 31.93, 66.28 ] Hz 

Neural Network Predictions  After the neural network was 
trained, its was fed 10000 pairs of modal frequencies, and it 
output stiffness changes.  The percentage error between the 
actual stiffness changes and the neural network predictions 
are plotted in Figure 2., where the error was computed as the 
ratio of stiffnesses: 

Error =  Predicted Change / Actual Change 

The worst error for the K1 stiffnesses is about 6.5 %, for the 
K2 stiffnesses about 9%. 

CONCLUSIONS 

This approach offers much promise for solving realistic 
modal sensitivity problems in practical situations.  The main 
difficulty with solving this problem is having sufficient 
modal data to train a network.  In a testing situation, a few 
sufficiently accurate modal frequencies can usually be 
obtained by curve fitting measurement data.  Sufficiently 
accurate mode shape data can usually be obtained as well.  
Modal damping is the most difficult parameter to accurately 
estimate from test data. 

We have shown with the use of a simple example that a 
neural network can be trained to give back usable stiffness 
results by only using modal frequencies and stiffness 
changes for training.  We have also pointed out that 
conflicting training sets can result, where two different 
stiffness changes yield the same set of modal frequencies.  
When this occurs, one of the two conflicting sets must be 
eliminated to avoid confusing the neural network. 

Another way to resolve this ambiguity in training sets is to 
use mode shape data also as inputs.  Since the shape values 
will often be different even when the frequencies are not, 
this will add uniqueness to each training set. 

The difficulty with using mode shapes as inputs is that the 
size of the network will quickly grow larger, lengthening the 
training time.  To minimize this impact, only those shape 
values corresponding to the stiffness DOF pairs (output 
neurons) should be considered first.  In the case of the 2 
DOF example used here, adding the mode shapes as inputs 
would only increase the number of input neurons from 2 to 
6. 

In summary, neural networks appear to do a good job of 
solving the modal sensitivity problem, if properly trained.  
The SDM algorithm provides a straightforward way of 
providing training data sets for a neural network.  The 
combination of these two methods should provide a 
practical tool for solving a variety of vibration trouble 
shooting, finite element model updating, and structural fault 
detection problems. 
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Figure 2.A  K1 Ratio (Predicted/Exact) 

 
Figure 2.B  K2 Ratio (Predicted/Exact) 
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