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ABSTRACT 

In two previous IMAC papers ([1] & [2]), the Rational 
Fraction Polynomial method for estimating modal parame-
ters from Frequency Response Functions (FRFs) was intro-
duced and discussed.  Also, the concepts of Local and Glob-
al curve fitting were presented, and comparisons between 
these two approaches were given. 

In this paper, a new formulation of the Rational Fraction 
Polynomial equations is presented which will obtain global 
estimates of modal frequency and damping from a set of 
FRF measurements.  This algorithm can then be used in 
conjunction with the previously described Global Residue 
algorithm [2] to obtain frequency, damping, and mode 
shape parameters from a set of FRF measurements. 

This paper includes some examples of the use of Global 
curve fitting, as well as a discussion of the advantages & 
disadvantages of Local versus Global versus Poly-Reference 
curve fitting.  Also, the problem of compensating for the 
effects of out-of-band modes is covered, and the unique way 
in which this new Global method can handle these effects is 
illustrated. 

INTRODUCTION 

Modes of vibration are global properties of a structure.  That 
is, a mode is defined by its natural frequency, damping, and 
mode shape, each of which can be measured (or estimated) 
from a set of FRF measurements that are taken from the 
structure. 

Modal properties are evidenced by resonance peaks which 
appear in the FRF measurements.  Modal frequency is 
closely related to the frequency of a resonance peak, and is 
often approximated by using the peak frequency itself.  
Modal damping is evidenced by the width of the resonance 
peak, and can be approximated as one-half of the difference 
between the two frequencies on either side of the peak 
where the FRF value is equal to .707 of the peak value.  
These two points are known as the Half Power Points. (See 
Figure 1). 

Mode shapes are evidenced by the heights of the resonance 
peaks, and are commonly obtained by assembling the reso-
nance peak values from a set of FRF measurements. 

In summary then, modal frequency and damping can be 
measured from any FRF measurement, except those where 
the resonance peak has zero amplitude.  Each mode is evi-

denced by a resonance peak which has the same peak fre-
quency and width in every FRF measurement.  Each mode 
shape is measured by assembling the peak values of each of 
the resonance peaks which occur at the same frequency in 
all of the FRF measurements, as shown in Figure 1.  If there 
is no peak in a particular measurement but the peak appears 
in other measurements, the mode is said to be at a node 
point, i.e. its mode shape amplitude is zero. 

CURVE FITTING FRFs 

Modal properties can also be defined as parameters of a 
linear dynamic mathematical model of a structure. 

This can be done with either a time domain model (a set of 
differential equations), or an equivalent frequency domain 
model (a transfer function matrix).  In this paper, a form of 
the FRF matrix model will be used since the FRF is simply 
a special case of the transfer function. (See figures 2 & 3). 

Regardless of which model is used, all modal parameter 
estimation techniques attempt to match up an analytical ex-
pression of the structure's dynamics with some measured 
data which represents its dynamics.  This process of match-
ing up an analytical function with a set of measured data is 
called curve fitting.  During the process of curve fitting, the 
unknown parameters of the model are estimated, hence the 
process is also called parameter estimation. 
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The purpose of all curve fitting in modal analysis, then, is to 
obtain the most accurate estimates of modal parameters as 
possible.  Unfortunately, it is possible with many curve fit-
ters to obtain good curve fits, i.e. match the analytical model 
to the measured data very closely, but still obtain poor esti-
mates of the modal parameters. Another way of saying this 
is that good curve fits are necessary for accurate parameter 
estimates, but not sufficient. 

LOCAL VERSUS GLOBAL CURVE FITTING 

Most curve fitting is done today in a 'local' sense.  That is, 
each measurement is individually curve fit, and the modal 
properties for each mode are estimated. 

Four parameters (frequency, damping, and complex residue) 
are estimated for each mode, and if an MDOF fitter is used, 
a total of 4 x (number of modes) unknowns are estimated 
simultaneously from each measurement.  With a large num-
ber of unknowns, significant errors can occur in the result-
ing estimates, even though the curve fits look good. 
 

One approach that can reduce errors is to divide the curve 
fitting process into two steps: 

(1) estimate modal frequency and damping using all meas-
urements 

(2) estimate residues using the fixed frequency and damp-
ing values. 

This process is called Global Curve Fitting.  In a previous 
paper, an algorithm was introduced for performing step (2).  
In the next section, a new algorithm for performing step (1), 
i.e. obtaining estimates of global frequency and damping, is 
introduced. 

A GLOBAL RFP METHOD FOR ESTIMATING FRE-
QUENCY & DAMPING 

The Rational Fraction Polynomial (RFP) method was origi-
nally introduced in reference [1].  In that paper, it was 
shown how the characteristic polynomial could be identified 
from multiple measurements.  The use of   orthogonal poly-
nomials uncouples the solution equations of the RFP method 
so that the denominator (characteristic) polynomial coeffi-
cients can be obtained independently of the numerator poly-
nomial coefficients. 

Taking advantage of the fact that the characteristic polyno-
mial is the same for all FRF measurements which are taken 
from the same structure, the solution equations for the char-
acteristic polynomial coefficients can be written for as many 
measurements as desired.  This is shown in Figure 19 of 
reference [1], and is repeated here in Figure 4.  Expression 
(1) in Figure 4 contains the repeated application of the solu-
tion equations to (p) different FRF measurements. 
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Characteristic Polynomial 
from Multiple Measurements 
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Least Squared Error Solution 
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{ }B = char. polynomial coeffs.    (n-vector) 

m= order of the numerator polynomial 
n = order of the denominator polynomial 

L = no. of FRF data points used. 

FIGURE 4 

If there are (n) unknown polynomial coefficients in the n-
vector (B), then there are (n by p) equations in expression 
(1).  This is an over specified set of equations since only 
(n) equations are needed to solve for the unknowns.  Hence 
a "least squared error" set of equations (2) is solved instead.  
These equations can use data from any desired number of 
FRF measurements, but will always solve for the same 
number of unknowns (B). 

Reference [1] contains an error in that the solution equations 
are written in Figure l9 with the orthogonal polynomial co-
efficients (D) as unknowns.  These coefficients are not the 
same for all measurements, but the ordinary polynomial 
coefficients (B) are the same.  So, the equations must be 
written in terms of the ordinary polynomial coefficients, as 
shown in figure 4. Note that the orthogonal coefficients are 
related to the ordinary coefficients by a known invertable 
matrix [BMk]. 

Note also that the [Xk] matrix is made up of matrices that 
contain both numerator [Pk] and denominator [Tk] orthogo-
nal polynomials. (See reference [1] for details).  This allows 
us to add in extra numerator terms to the curve fitting model 
as a means of compensating for the effects of out-of band 
modes.  The advantage of this capability, which is unique to 
the RFP method, with be illustrated later on by example. 

The Global RFP Frequency & Damping algorithm consists 
essentially of setting up and solving equations (2).  To set up 
the process, the operator must specify the total number of 
modes, the frequency band of FRF measurement data to be 
used, and the number of extra numerator polynomial terms, 
if desired.  After equations (2) are solved and the polynomi-
al coefficients determined, they are passed into a polynomial 
root solver which finds the global frequency and damping 
estimates. 

TEST CASE WITH HEAVY MODAL COUPLING 

In this first example, the Global RFP method is compared to 
the Local RFP method by curve fitting five synthesized, 
noise contaminated, FRF measurements which contain three 
heavily coupled modes.  Plots of the log magnitudes of 
these measurements are shown in Figure 5, along with a 
listing of the modal parameters used to synthesize them. 
(Only the measurement data between 45 Hz and 60 Hz, as 
indicated with line cursors on the measurement plots, was 
used for curve fitting). 

These measurements contain some conditions which are 
oftentimes difficult for Local fitters to handle.  Notice that 
measurements #1 and #3 contain node points for modes #2 
and #1 respectively.  Notice also that measurements #4 and 
#5 are characteristic of driving point measurements (all res-
idues have the same sign) which are typically difficult to 
curve fit. 
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Modal Data Used To 
Synthesize Measurements 

Mode No.:   1 2 3 
Frequency (Hz):  50.0 52.0 55.0 
Damping (%):  3.0 2.5 3.0 
   ------- Residues --------- 
Meas. No.1:  1.0 0.0 -1.0 
Meas. No.2:  0.5 -0.25 -0.6 
Meas. No.3:  0.0 -0.5 0.6 
Meas. No.4:  -0.5 -0.75 -0.3 
Meas. No.5:  -1.0 -1.0 -0.8 

FIGURE 5.a 

 
 Meas. No.1 Meas. No.2 

 

 Meas. No.3 Meas. No.4 

 
 Meas. No.5 

FIGURE 5.b 

Figure 6 shows the results of curve fitting these measure-
ments with a Local RFP fitter.  At least two problems can be 
pointed out in these results:  

Local Rational Fraction Polynomial Results 
Meas. No.1 (Identified first two modes correctly) 

 Mode Freq(Hz) Damp(%)  Mag Phs 

 1 49.99 3.03 1.998E+00 .33 
 2 55.01 3.00 1.918E+00 180.20 
 3 55.26 .95 7.495E-03 43.96 

Meas. No. 2 (Large damping & Residues errors) 

 MODE FREQ(Hz) DAMP(%)  AMPL PHS 

 1 50.09 2.38 4.197E-01 339.91 
 2 54.72 4.26 7.120E-01 146.28 
 3 55.60 .73 4.585E-02 185.47 

Meas. No.3 (Modes assigned to wrong mode nos.) 

 MODE FREQ(Hz) DAMP(%)  AMPL PHS 

 1 51.99 2.49 4.914E-01 100.73 
 2 55.00 2.92 5.873E-01 .73 
 3 57.77 .95 7.943E-04 7.43 

Meas. No.4 (Large damping & Residues errors) 

 MODE FREQ(Hz) DAMP(%)  AMPL PHS 

 1 49.92 1.36 1.174E-01 207.24 
 2 51.83 4.04 1.468E+00 178.87 
 3 56.14 1.07 8.045E-02 167.07 

Meas. No.5 (Large damping & Residues errors) 

 MODE FREQ(Hz) DAMP(%)  AMPL PHS 

 1 50.12 2.61 9.644E-01 109.27 
 2 52.16 2.99 1.448E+00 190.45 
 3 55.66 2.28 4.929E-01 175.28 
 

FIGURE 6 
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Problem #1: Notice that the Local fitter obtained the correct 
results for measurements #1 and #3.  In each case a third 
mode was also found but the amplitude of its residue was 
very small, making it insignificant.  The problem occurred, 
though, in assigning the parameters to the mode numbers.  
When node points are encountered like this, there is no 
straightforward way to sort out the results of a Local fitter 
and assign the parameters to the correct mode. 

Problem #2: The Local fitter was unable to obtain accurate 
parameter estimates for measurements #2, #4, and #5, where 
all three modes were present.  The best clue of this is in the 
wide disparity of damping estimates in each measurement, 
even though the correct answers are close in value.  Damp-
ing is the most difficult modal parameter to estimate, and in 
a closely coupled case like this, there will often be large 
variations in its estimates from one measurement to the 
next. 

The Global RFP Frequency & Damping results are shown in 
figure 7. In Case #1, only the first measurement was used.  
This measurement only has two modes present, but the 
curve fitter was told there were three.  The negative damp-
ing estimate for mode #2 indicates that only two valid 
modes were found. 

Global Frequency and Damping Estimates 
Case No.1 (Using Meas. No.1 only) 

 Mode Freq(Hz) Damp(%)  Damp(Hz) 

 1 50.00 2.98 1.49 
 2 52.70 -.00 -.03 
 3 55.03 2.96 1.63 

Case No. 2 (Using Meas. No.1 & No.2) 

 Mode Freq(Hz) Damp(%)  Damp(Hz) 

 1 49.99 2.95 1.48 
 2 51.97 2.71 1.41 
 3 55.03 3.01 1.66 

Case No.3 (Using Meas. No.1, No.2, & No.3) 

 Mode Freq(Hz) Damp(%)  Damp(Hz) 

 1 50.00 2.97 1.48 
 2 52.01 2.67 1.39 
 3 55.02 3.02 1.66 

Case No.4 (Using all 5 Measurements) 

 Mode Freq(Hz) Damp(%)  Damp(Hz) 

 1 49.96 2.93 1.47 
 2 52.05 2.60 1.35 
 3 55.04 2.98 1.64 
 

FIGURE 7 

In Case #2, measurements #1 and #2 were used.  Since 
measurement #2 contains all three modes, valid estimates of 
frequency and damping for all three modes were obtained. 

In Case #3, the first three measurements were used, and in 
Case #4, all five measurements were used.  All of the esti-
mates in Case #4 are in error by less than 5%, which is ex-
tremely good considering the amount of noise, modal cou-
pling, and the two node points of these measurements. 

COMPENSATION FOR OUT-OF-BAND MODES  

FRF measurements usually contain the residual effects of 
modes which lie outside of the measurement frequency 
range.  In addition, curve fitting is usually always done in a 
more limited frequency range which surrounds the reso-
nance peaks of the modes of interest. 
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Synthesize Measurements with an 
Out-of-Band Mode 

Mode No.: 1 2 3 4 
Frequency (Hz):  50.0 52.0 55.0 125.0 
Damping (%):  3.0 2.5 3.0 4.0 
  -------Residues --------- 
Meas. No.1:  1.0 0.0 -1.0 20.0 
Meas. No.2:  0.5 -0.25 -0.6 -15.0 
Meas. No.3:  0.0 -0.5 0.6 20.0 
Meas. No.4:  -0.5 -0.75 -0.3 -18.0 
Meas. No.5:  -1.0 -1.0 -0.8 -10.0 

FIGURE 8.a 

 
 Meas. No.1 Meas. No.2 

 
 Meas. No.3 Meas. No.4 

 
 Meas. No.5 

FIGURE 8.b 

Hence, to obtain accurate parameter estimates, all curve 
fitters must somehow compensate for the residual effects of 
modes which lie outside of the curve fitting band. 

With an MDOF curve fitter, you can always over specify the 
number of modes to be used in the curve fitting process, and 
this is commonly done to compensate for out-of-band 
modes.  However, after the curve fitting is done, the pa-
rameters of so-called computational modes must be sorted 
out and removed from the desired results.  Operator judg-
ment is usually required to sort out the computational 
modes. 

The RFP method has the advantage that additional numera-
tor polynomial terms can be added to compensate for out-of-
band modes, thus avoiding the problem of computational 
modes. 

Illustrative Example: Figure 8 shows five synthesized, 
noise contaminated, measurements which were synthesized 
with the same modal parameters as those in Figure 5, but 
with a fourth out-of-band mode added at 125 Hz. 
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Global Frequency and Damping Estimates 
with Out-of-Band Mode 

Case No.1 (Using no extra polynomial terms) 

 Mode Freq(Hz) Damp(%)  Damp(Hz) 

 1 47.64 20.95 10.21 
 2 51.76 2.73 1.42 
 3 55.12 2.57 1.42 

Case No. 2 (Using 4 modes, Mode No.4 
   is computational) 

 Mode Freq(Hz) Damp(%)  Damp(Hz) 

 1 49.99 2.94 1.47 
 2 52.01 2.61 1.36 
 3 55.05 3.91 1.00 
 4 117.32 -4.58 -5.38 

Case No.3 (Using 4 extra polynomial terms) 

 Mode Freq(Hz) Damp(%)  Damp(Hz) 

 1 49.98 3.00 1.50 
 2 52.09 2.48 1.29 
 3 55.06 2.63 1.45 
 

FIGURE 9 

Figure 9 shows the results which were obtained from using 
the Global RFP fitter in Case #1: with no compensation, 
Case #2: with an extra mode, and Case #3: with 4 extra nu-
merator terms. (Again, only the data between 45 Hz and 60 
Hz was used by the curve filter).  

Adding an extra mode worked well in this case because, of 
course, there was a fourth mode in the data.  However, in 
most cases there will be complex combinations of many out-
of-band modes causing residual errors within the band. 

Case #3 shows that the use of extra numerator terms ade-
quately compensates for the residual effects of out-of-band 
modes, and eliminates the problem of sorting out and re-
moving the parameters of "computational" modes from the 
curve fitting results. 

COMPARISON OF CURVE FITTING METHODS 

In this paper and a previous one [2], we have shown some of 
the advantages of Global curve fitting over Local curve fit-
ting, specifically for the MDOF case.  One might rightfully 
ask, though, “What about SDOF methods?”, or "What about 
the newer multiple reference, (or Poly-Reference) meth-
ods?”  “Where and when are these methods used?". 

In Figure 10, I attempt to answer these questions by show-
ing a comparison of all of the popular curve fitting methods 
as to their advantages and disadvantages. 

For troubleshooting work, and with lightly coupled modes, 
SDOF methods are still preferred to all others because they 
are fast and don't require a lot of operator skill. 

Local MDOF methods will generally obtain better results 
than SDOF methods with heavy noise and modal coupling, 
but the operator must be careful to "steer" the fitter through 
local modes and node point situations. 

Global fitting offers definite advantages over Local MDOF 
fitters, as already pointed out here, but there are still some 
cases, e.g. repeated roots, that Global fitters cannot handle. 

The newly developed Poly-Reference algorithms ([3], [5]) 
offer even greater promise for obtaining accurate modal 
parameter estimates by curve fitting FRF measurements.  
These algorithms can simultaneously handle data from two 
or more rows or columns of the FRF matrix, i.e. multiple 
references.  Hence, situations such as repeated roots, which 
require two or more rows or columns of data to resolve, can 
be handled with a Poly-Ref fitter.  In addition, because sev-
eral references are used, the chances of missing a mode of 
the structure are lessened. 

Of course, in a large modal test, it is always advisable to test 
the structure using several reference points to insure that no 
modes are overlooked.  Local or Global fitters can be used 
on multiple reference FRF data as well. 

On a related subject [4], the real advantage of multiple 
shaker (simultaneous multiple reference) testing, is that 
large structures can be more effectively excited and non-
linearity’s removed so that better quality FRF measurements 
are made.  Any type of curve fitter; Local, Global, or Poly-
Reference, can be used on these measurements also.  In 
seeking accurate modal parameter estimates, the primary 
consideration, regardless of which type of curve fitter is 
used, should always be to obtain the highest quality FRF 
measurements possible. 

Comparison of Curve Fitting Methods 

Method Advantages Disadvantages 

Local SDOF ∗Fast 

∗Easy to use 

∗Only for light 
modal cou-
pling. 

Local MDOF ∗Good with 
heavy modal 
coupling 

∗Good with 
noise 

∗Skill required 
to choose No. 
of modes. 

∗Poor results 
will local 
modes & nod-
al points. 

Global ∗Global Freq & 
Damp Est. 

∗Errors with 
Freq or Damp 
variations. 
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∗Good with lo-
cal modes & 
nodal points. 

∗Errors with 
poorly excited 
modes. 

PolyReference ∗Good for re-
peated roots. 

∗Poor results 
with incon-
sistent 
measmts. 

FIGURE 10 

CONCLUSIONS 

It was shown in this paper that Global curve fitting offers 
some distinct advantages over Local curve fitting.  Howev-
er, for simple structures with lightly coupled modes, Local 
methods will still yield acceptable results.  On the other 
hand, for larger more complex structures with heavy modal 
coupling, Global or Poly-Ref curve fitters should always 
give superior results to those of Local fitters. 

A remaining problem with the use of all current-day curve 
fitters is that the operator must still determine before-hand 
how many modes are in the data.  Research is being done, 
however, on new algorithms which will automatically de-
termine how many modes are present, and some recent re-
sults are very encouraging. 
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