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ABSTRACT 

This is a new formulation which overcomes many of the 
numerical analysis problems associated with an old least 
squared error parameter estimation technique.  Overcoming 
these problems has made this technique feasible for 
implementation on mini-computer based measurement 
systems. 

This technique is not only useful in modal analysis 
applications for identifying the modal parameters of 
structures, but it can also be used for identifying poles, 
zeros and resonances of combined electro-mechanical 
servo-systems. 

INTRODUCTION 

During the last ten years, a variety of FFT-based two 
channel digital spectrum analyzers have become 
commercially available which can make frequency response 
measurements.  These analyzers are being used to make 
measurements on mechanical structures, in order to identify 
their mechanical resonances, or modes of vibration. 
Likewise, they are being used to measure the dynamic 
characteristics of electronic networks, and of combined 
electro-mechanical servo-systems. 

One of the key advantages of the digital analyzers is that the 
measurements which they make, such as frequency response 
functions, are in digital form, i.e. computer words in a 
digital memory. 

Therefore, these measurements can be further processed to 
identify the dynamic properties of structures and systems. 

The frequency response function (FRF) is, in general, a 
complex valued function or waveform defined over a 
frequency range. (See Figure 4.)   Therefore, the process of 
identifying parameters from this type of measurement is 
commonly called curve fitting, or parameter estimation. 

This paper presents the results of an algorithm development 
effort which was begun back in 1976.  At that time, we were 
looking for a better method for doing curve fitting in a mini-
computer based modal analysis system.  This type of system 
is used to make a series of FRF measurements on a 
structure, and then perform curve fitting on these 
measurements to identify the damped natural frequencies, 
damping, and mode shapes of the predominant modes of 
vibration of the structure. 

The three main requirements for a good curve fitting 
algorithm in a measurement system are 1) execution speed, 
2) numerical stability, and 3) ease of use. 

Previous to this development effort, we had experimented 
with a well known curve fitting algorithm called the 
Complex Exponential, or Prony algorithm. This algorithm 
has undergone a lot of refinement ([2], [3]) and is 
computationally very efficient and numerically stable in 16-
bit machines.  However, it curve fits the impulse response 
function instead of the FRF.  The impulse response can be 
obtained by taking the Inverse Fourier transform of the FRF.  
When the FFT is used to obtain the impulse response from 
an FRF measurement, a potentially serious error can occur, 
which is called wrap around error, or time domain 
leakage. This error is caused by the truncated form (i.e. 
limited frequency range) of the FRF measurement, and 
distorts the impulse response as shown in Figure 1. 

Hence, we sought to develop an algorithm with some of the 
same characteristics as the complex exponential method, 
(e.g., it is easy to use along with being numerically stable),  

 
FIGURE 1. Impulse Response with Leakage. 
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but that curve fits the FRF measurement data directly in the 
frequency domain. 

If  it is assumed that the frequency response measurement is 
taken from a linear, second order dynamical system, then 
the measurement can be represented as a ratio of two 
polynomials, as shown in Figure 6.    In the process of curve 
fitting this analytical form to the measurement data, the 
unknown coefficients of both the numerator and 
denominator polynomials, (ak, k=0,…,m) and (bk, 
k=0,…,n), are determined.  It is shown later that this 
curve fitting can be done in a least squared error sense by 
solving a set of linear equations, for the coefficients. 

The greatest difficulty with curve fitting polynomials in 
rational fraction form is that the solution equations are ill-
conditioned and hence are difficult, if not impossible to 
solve on a mini-computer, even for simple cases.  To curve 
fit with an mth order numerator and nth order denominator 
polynomial, (m+n+1) simultaneous equations must be 
solved.  This is equivalent to inverting an (m+n+1) matrix.  
Part of the problem stems from the dynamic range of the 
polynomial terms themselves.  For instance, the highest 
order term in a 12th order polynomial evaluated at a 
frequency  of 1 kHz, is on the order of 10 to the 36th power, 
which borders on the standard numerical capability of many 
16 bit mini-computers. 

We will see later that this problem can be minimized by re 
scaling the frequency values.  However, this single step 
doesn't change the ill-conditioned nature of the solution 

equations. We did find, though, that the use of orthogonal 
polynomials removes much of the ill-conditioning, and at 
the same time reduces the number equations to be solved to 
about half the number of equations of the ordinary 
polynomial case. 

Much of the discussion in this paper, then, centers on the 
reformulation of the solution equations in terms of 
orthogonal polynomials, and generation of the polynomials 
themselves. 

An alternative formulation, which yields an estimate of the 
characteristic polynomial from multiple measurements is 
also included. 

Finally, some examples of the use of the curve fitter are 
given. Some of the problems which are common to all curve 
fitters, such as measurement noise, frequency resolution, 
and the effects of resonances which lie outside of the 
analysis band are discussed. companion paper (Reference 
[4]) discusses in more detail, these and other problems 
which can occur when curve fitting FRF measurements. 

MODELING SYSTEM DYNAMICS IN THE 
LAPLACE DOMAIN 

The dynamics of a mechanical structure can be modeled 
with a Laplace domain modal, as shown in Figure 2.  In this 
model, the inputs and responses of the structure are 
represented by their Laplace transforms, Time domain 
derivatives (i.e. velocity and acceleration) do not appear 
explicitly in the Laplace domain model but are accounted 
for in the transfer functions of the structure.  These  transfer 
functions are contained in a transfer matrix and contain all 
of the information necessary to describe structural responses 
as functions of externally applied forces. 

Using a Laplace domain model, a structure is excited by 
several different input forces, then its transformed response 
is a summation of terms, each term containing one of the 
transformed input forces multiplied by the transfer function 
between the input point  (degree-of-freedom) and the 
desired response point. 

Transfer Function of a Single Degree-of-Freedom 
System 

The Laplace variable is a complex variable, normally 
denoted by the letter s.  Since the transfer function is a 
function of the s-variable, it too is complex valued, (i.e. for 
every complex value of s, the transfer function value is a 
complex number).  Plots of a typical transfer function on the 
s-plane are shown in Figure 3.  Because it is complex, the 
transfer function can be represented by its real and 
imaginary parts, or equivalently by its magnitude and phase.  
Note that the magnitude of the transfer function goes to 
infinity at two points in the s-plane.  These singularities are 
called the Poles of the transfer function. These poles define 
resonant conditions on the structure which will "amplify" an 
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input force.  The location of these poles in the s-plane is 
defined by a Frequency and Damping value as shown in 
Figure 5. 

 

Hence the σ and jω axes of the s-plane have become 
known as the damping axis and the frequency axis 
respectively.  Note also in Figure 5 that the transfer function 
is only plotted over half of the s-plane, i.e. it is not plotted 
for any positive values of damping.  This was done to give a 
clear picture of  the transfer function values along the 
frequency axis. 

The Frequency Response Function 

In a test situation we do not actually measure the  transfer 
function over the entire s-plane, but rather its values along 
the frequency axis. These values are known as the frequency 
response function, as shown in Figure 3.  The analyzers 
compute the FRF by computing the Fourier transform of 
both the input and response signals, and  then forming the 
ratio of response to input in the frequency domain.  The 
resulting function is the same as evaluating the system's 
transfer function for s=jω.  Since the transfer function is an 
"analytic" function, its values throughout the s-plane can be 
inferred from its values along the frequency axis. 

A dynamic frequency domain model, similar to the Laplace 
domain model, can also be built using frequency response 
functions.  The form of the frequency domain model is 
exactly the same as the Laplace domain model, but with 
frequency response functions replacing transfer functions 
and Fourier transforms replacing Laplace transforms of the 
structural inputs and responses. 

The frequency response function, being complex valued, is 
represented by two numbers at each frequency.  Figure 4 
shows  some of the alternative  forms in which this function 
is commonly plotted.  The so called CoQuad plot, or real 
and imaginary parts vs. frequency, derives its origin from 
the early days  of swept sine testing when the real part was 

referred to as the coincident waveform (that portion of the 
response that is in phase with the input) and the imaginary 
part as the quadrature waveform (that portion of the 
response that is 90 degrees out-of-phase with the input).  
The Bode plot, or log magnitude and phase vs. frequency, is 
named after H.W. Bode who made many contributions to 
the analysis of frequency response functions.  (Many of 
Bode's techniques involved plotting these functions along a 
log frequency axis.) 

 

 
The Nyquist plot, or real vs. Imaginary part, is named after 
the gentleman who popularized its use for determining  the 
stability of linear systems.  The Nichols plot or log 
magnitude vs. phase angle is named after N.B. Nichols who 
used such plots to analyze servo-mechanisms. 

It is important to realize that all of these different forms of 
the frequency response function contain exactly the same 
information, but are presented in different forms to 
emphasize certain features of the data. 
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ANALYTICAL FORMS OF THE FREQUENCY 
RESPONSE 

The FRF can he represented either in rational fraction or 
partial fraction form, as shown in Figure 6. 

Rational Fraction Form 

The rational fraction form is merely the ratio of two 
polynomials, where in general the orders of the numerator 
and denominator polynomials are independent of one 
another.  The denominator polynomial is also referred to as 
the characteristic polynomial of the system. 

Recalling that the FRF is really the transfer function 
evaluated along the frequency axis, the poles of the transfer 
function correspond to values of the s-variable for which the 
characteristic polynomial is zero, i.e. the transfer function is 
infinite. These values of s are also called the roots of the 
characteristic polynomial. 

Similarly, the roots of the numerator polynomial are the 
values of the s-variable where the transfer function is zero 
and are therefore called the zeros of the transfer function. 

Hence, by curve fitting the analytical form in equation (1) to 
FRF data, and then solving for the roots of both the 
numerator and characteristic polynomials, the poles and 
zeros of the transfer function can be determined.  Poles and 
zeros are typically used to characterize the dynamics of 
electronic networks and servo-systems, 

Partial  Fraction Form 

For resonant systems, that is, systems where the poles are 
not located along the damping axis, the FRF can also be 
represented in partial fraction form.  This form clearly 
shows the FRF in terms of the parameters which describe its 
pole locations.  For a model with n-degrees-of-freedom, it is 
clear that the FRF contains n-pole pairs. 

In this form, the numerator simply becomes a pair of 
constants, called residues, which   also occur as complex 
conjugate pairs.  Every pole has a different residue 
associated with it.  In modal analysis, the unknown 
parameters of the partial fraction form, i.e. the poles and 
residues, are used to characterize the dynamics of structures, 

PROBLEM FORMULATION 

The curve fitting problem consists of finding the unknown 
(ak, k=0,…,m) and (bk, k=0,…,n) such that the error 
between the analytical expression (1)  in Figure 6 and an 
FRF measurement is minimized over a chosen frequency 
range.  To begin the problem formulation, we need to define 
an error criterion. 

 

ANALYTICAL FORMS 
OF THE FREQUENCY RESPONSE FUNCTION 
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FIGURE 6 

Error Criterion 

First we can write the error at a particular value of 
frequency as simply the difference between the analytical 
value and. the measurement value of the FRF, as shown in 
expression (3) in Figure 7.  Next, we can substitute for the 
analytical value in expression (5) by using expression (1).  
This leads to equation (4) which we will use as a measure of 
the error at each value of frequency. 

Furthermore, we can make up an entire vector of errors, one 
for each frequency value  where we wish to curve fit the 
data, as shown in expression (6).  A squared error criterion 
can then be formed from the error vector, as shown in 
equation (5). 
Notice that, in this case, the criterion is written for  (L) 
frequency values, or data points.    This criterion (J) will 
always have a non-negative value.  Therefore, we want to 
find values of the a’s and b's so that the value of J is 
minimized, ideally zero.  
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ERROR CRITERION 

Error at ith Frequency (ωi) 
(ei = (Analytical FRF - Measured FRF) at ωI (3) 

or 
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where:  hi = FRF measurement data at ωI 

Squared Error Criterion 

 J e e E Ei i
t

i

L

= =∗ ∗

=
∑ { } { }

1
 (5) 

 Error Vector = =





















{ }E

e
e

en

1

2


 (6) 

 *- denotes complex conjugate 
 t - denotes transpose 

FIGURE 7 

Minimizing the Error 

Before continuing the analysis, we will re-write the error 
vector in a more compact vector-matrix form, by expanding 
each of the summations in equation (4).  This yields the 
results shown in Figure 8. 

Note that the (m+1) unknown numerator polynomial 
coefficients have now been assembled into a vector {A}, 
and that (n) the (n+l) unknown denominator coefficients 
have been assembled into the vector {B}.  It is assumed 
from this point on that the highest order denominator 
coefficient is unity; (bn=1). This can always be 
accomplished by factoring out the highest order coefficient 
(bn) and dividing it into the other polynomial coefficients, 
thus yielding bn=1.  This accounts for the extra term (W) in 
expression (7). 

THE ERROR VECTOR 
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FIGURE 8 

Using the error vector expression (7), we an now write the 
error criterion as shown in expression (8) in Figure 9.  Note 
that it is now written as a function the two unknown  
coefficient vectors {A} and {B}.  If we could plot this 
function over the multi-dimensional space of {A} and {B}, 
it would have the shape of a bowl with a smooth rounded 
bottom and, most importantly, a single point at the bottom, 
i.e. a single minimum value. 

Knowing that this criterion function has a single minimum 
value, we can set its derivatives (or slope) with respect to 
the variables {A} and {B}to zero to find the minimum 
point.  These expressions ((9) and (10)) must be satisfied at 
the minimum point of the quadratic criterion function.  
Expression (9) is actually a set of (m+1) equations, and 
expression (10) is a set of (n) equations. 

Since both expressions (9) and (10) contain the unknown 
variables {A} and {B} they must be solved together as an 
entire set of (n+m+1) equations.  These equations are 
written in partitioned form in expression (11). 
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ERROR FUNCTION 
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SOLUTION EQUATIONS 
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(m+n+1) equations 
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FIGURE 10 

Notice that the equations (11) are all real valued, which is 
expected since the unknowns {A} and {B} are real 
coefficient values. 

In principle then, the least squares estimates of {A} and {B} 
can be obtained by solving the linear equations (11).  Our 
experience though, and apparently that of others [5] is that 
these equations are generally ill-conditioned and hence 
difficult to solve.  We will therefore turn to a re-formulation 
of these equations using orthogonal polynomials. 

ORTHOGONAL POLYNOMIALS 

In the re-formulation of the curve fitting problem in terms 
orthogonal polynomials we will take advantage of a special 
property of the FRF as well as the orthogonality property of 
the polynomials themselves to greatly simplify the 
calculations. 

Normally, we only compute an FRF measurement in a 
digital analyzer for positive values of frequency, but in fact 
the function exists for negative frequencies as well.  
Furthermore, the FRF exhibits Hermitian symmetry about 
the origin of the frequency axis, as shown in Figure 11.  
That is, if we fold the real part of the FRF for positive 
frequencies about the origin, we obtain the real part for 
negative frequencies. 

Similarly, if we fold the imaginary part of the FRF for 
positive frequencies about the origin, and change its sign, 
we obtain the imaginary part for negative frequencies. 

HERMITIAN SYMMETRY OF THE 
FREQUENCY RESPONSE FUNCTION 

 
Symmetry: ( ) ( )Re Reh hi i= −  

 ( ) ( )Im Imh hi i= − −  

 (hi, i=1,…L) are FRF values from +ω1 to +ω2 

 (h-i, i=1,…L) are FRF values from -ω1 to -ω2 

FIGURE 11 

The real part is also referred to as an EVEN function, and 
the imaginary part as an ODD function. Note that the two 
frequency intervals of the FRF each contain (L) data points, 
the negative frequencies represented by the indices (-L,...,-
1), and the positive frequencies represented by the indices 
(1,...,L).  In order to preserve the symmetric properties of 
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the functions about the origin, the origin itself will be 
excluded from our further development of the curve fitting 
algorithm.  This is not a serious restriction though, since 
FRFs are rarely made with any accuracy at D.C. (or zero 
frequency). 

COMPLEX ORTHOGONAL POLYNOMIALS 
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FIGURE 12 

Complex polynomial functions can be defined as 
summations of EVEN and ODD functions which exhibit the 
same properties as the FRF.  As shown in Figure 12, the real 
polynomials are even functions, while the imaginary 
polynomials are odd functions.  Furthermore we will see 
later on, that not only can these polynomials be generated 
recursively, but they can also be generated so that they 
satisfy the orthogonality condition in expression (12).

 

POLYNOMIAL HALF FUNCTIONS 
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FIGURE 13 

So, instead of representing the in terms of ordinary 
polynomials, as in equation (1), we can represent it in terms 
of linear combinations of orthogonal polynomials.  This is 
not unlike the process of representing a time domain wave 
form with a summation of orthogonal sine and cosine 
functions as is done in Fourier Series. 

Orthogonal Polynomials in Terms of Half Functions 

One final problem that we face is that we would like to 
curve fit the measurement data for only positive values of 
frequency and yet take advantage of the orthogonality 
property of the orthogonal polynomials in the solution 
equations.  Recall that the solution equations (11) only apply 
for positive frequencies, but the orthogonality conditions 
(12) must include the polynomial values for negative 
frequencies as well. 

However, we can again take advantage of the symmetry 
properties of these polynomials to write orthogonality 
conditions in terms of positive frequency values only.  The 
orthogonal polynomials can be represented as the sum of 
two so-called half-functions as shown in equation (13).  One 
half-function is defined only for positive frequencies and the 
other is defined only for negative frequencies. 

The symmetric property of the polynomials is stated in 
expression (14) in terms of the index (k) of the functions 
themselves.  That is, when (k) is an odd number, the kth 
function is an odd function.  Likewise when (k) is an even 
number, the kth function is an even function. 

By applying this property to the original orthogonality 
definition (12), a new definition of orthogonality involving 
only the half-functions is possible.  Equation (15) states that 
the positive half functions, summed only over the (L) 
positive frequency data points, also satisfy the orthogonality 
condition.  Similarly, the negative half functions summed 
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over the (L) negative frequencies satisfy the same 
condition. 

Using this result, we are now ready to re-formulate the FRF 
in terms of orthogonal polynomials. 

FRF in Terms of Orthogonal Polynomials 

Expression (16) in Figure 14 shows the FRF in rational 
fraction form, but this time it is written in terms of two sets 
of orthogonal polynomials.  The unknown coefficients in 
this expression are (ck, k=0,…,m) and (dk, k=0,…,n) 
and it is these values which are sought as solutions during 
the curve fitting process.  Once the values of the c’s and 
d's are known, the coefficients of the ordinary polynomials, 
i.e. the a's and b's in equation (1), can be easily recovered. 

The denominator polynomials differ from the numerator 
polynomials in that they must satisfy a different 
orthogonality condition which contains a weighting 
function.  This function is the magnitude squared of the 
FRF. measurement data, and it will become apparent from 
the solution equation formulation which follows, that this 
orthogonality condition greatly reduces the complexity of 
the equations. 

FREQUENCY RESPONSE FUNCTION 
IN TERMS OF ORTHOGONAL POLYNOMIALS 
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FIGURE 14 

SOLUTION EQUATIONS IN TERMS OF 
ORTHOGONAL POLYNOMIALS 

Using the same procedure as the problem formulation for 
ordinary Polynomials, a new set of solution equations can 
be derived in terms of orthogonal polynomials.  First, the 
error vector can be re-written in terms of orthogonal 
polynomials, as shown in Figure 15.  (Again, it is assumed 
that the highest order denominator coefficient is unity; 
(dn=1)).  Then, by following the same steps as before; 
namely, formulation of an error criterion, and taking 
derivatives of the criterion with respect to the unknown 
polynomial coefficients, a new set of solution equations 
results.  These equations are expressed as equations (20). 

THE ERROR VECTOR 
IN TERMS OF ORTHOGONAL POLYNOMIALS 
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Comparing equations (20) with equations (11), it is clear 
that  using orthogonal polynomials caused two significant 
changes in the solution equations.  First, the two matrices 
[Y] and [Z] in equation (11) are now replaced with identity 
matrices (diagonal ones and zeros elsewhere) in equations 
(20). 

With these simplifications, equations (20) can be written as 
two sets of uncoupled equations with respect to the 
unknown vectors {C} and {D}.  Expression (21) is a set of 
(n) equations which is solved first for the denominator 
coefficients {D}.  Then the numerator coefficients {C} are 
obtained by solving equations (22). 

SOLUTION EQUATIONS IN TERMS OF 
ORTHOGONAL POLYNOMIALS 
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(m+n+1) equations 

where: ( )[ ] Re [ ] [ ]X P Tt= − ∗  (m+1 x n) 

 ( ){ } Re [ ] { }H P Wt= ∗  (m+1 vector) 

 [ ]I1 = Identity matrix (m+1 x m+1) 
 [ ]I2 = Identity matrix (n x n) 
 { }0 =Zero vector (n vector) 
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 { } { } [ ]{ }C H X D= −  (22) 
 

FIGURE 16 

GENERATING ORTHOGONAL POLYNOMIALS 

In order to set up the solution equations (21) and (22) for 
numerical solution, a method is needed for generating 
numerical values of the orthogonal half functions over the 
interval (L) positive frequency data points in the 
measurement.  The so-called Forsythe method has all of the 
computational properties we are looking for and in fact, can 
be simplified to handle the special types of functions we 
wish to compute. 

Reference [6] explains the Forsythe method in detail, and 
contains examples and further references on the algorithm.  
The algorithm details will not be presented here, but we will 
point out two simplifications which we made in applying it 
to this problem. 

The Forsythe equations for generating complex orthogonal 
polynomials are given in Figure 17, using notation similar to 
that in reference [6]  The weighting function for each data 
point is denoted by (qi, i=-L,…,L).  In our application, 
the numerator polynomials are generated with a unity 
weighting function (qi=1, i=-L,…,L), while the 
denominator polynomials are generated with a weighting 
function equal to the magnitude squared of the FRF data. 

COMPLEX ORTHOGONAL POLYNOMIALS BY 
THE FORSYTHE METHOD 
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 Xi = jωi= ith frequency 
 qi = weighting function at the ith frequency 

 Pi,k = kth order polynomial at the ith frequency 

FIGURE 17 

Complex Polynomials in Terms of Real Polynomials 

One computational savings which we discovered in using 
the Forsythe method is that the required complex 
polynomials could be represented in terms of real valued 
polynomials using, the simple rule given in equation (27), 
where Ri,k represents the kth real polynomial value 
evaluated at the ith frequency.  This result can be derived by 
substituting (Xi=jωi) into equations (23) through (26), and 
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representing the real polynomials simply as functions of the 
frequency (ωi), instead of Xi. 

The net result, then, is that the complex polynomials Pi,k 
can be generated by first generating the real polynomials 
Ri,k and then applying equation (27). 

SIMPLIFATIONS TO THE FORSYTHE METHOD 

Complex polynomials as functions of Real polynomials 
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Generation of Half Functions 
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FIGURE 18 

Generation of Half Functions 

If the complex polynomial half function symmetry (14) and 
orthogonality (15) properties, together with property (27) of 
the complex polynomials, are applied to the Forsythe 
formulas, the polynomial generation equations are reduced 
to the forms shown in equations (28) through (31).  
Comparing these equations with equations (23) through 
(26), two computational simplifications are readily apparent.  
First, the variable (Uk) has been removed from the 
calculations altogether, and secondly, all summations are 

performed only for positive frequencies instead of both 
positive and negative frequencies. 

Equations (28) through (31), together with equation (27), 
are used to generate all the terms of the [X] matrix and 
the{H} vector in solution equations (21) and (22). 

Scaling the Frequency Axis 

It is clear from equation (28) that orthogonal polynomial 
generation will also encounter numerical problems if the 
frequency is not scaled in some manner.  The simplest 
scaling procedure is to scale all frequencies to the UNIT 
interval t [-1, 1] by dividing all frequency values by the 
highest value of frequency used, (e.g., divide by ωL Figure 
11). 

Conversion from Orthogonal to Normal Polynomial 
Coefficients 

To curve fit a measurement, the solution equations (21) and 
(22) are solved for the unknown polynomial coefficients 
{C} and {D}.  Once these least squared error estimates are 
known, the curve fitting of the FRF measurement data is 
essentially complete.  However, the coefficients of the 
ordinary polynomials {A} and {B} are more useful than the 
orthogonal polynomial coefficients, and can be computed 
from the {C} and {D} solutions by using some formulas 
given in reference [6].  These formulas need no further 
discussion here since they can be used directly as they are 
given in [6]. 

IDENTIFYING THE CHARACTERISTIC 
POLYNOMIAL FROM MULTIPLE 
MEASUREMENTS 

Many times, it is necessary and desirable to make multiple 
FRF measurements on a system or structure in order to 
adequately identify its dynamics.  When exciting modes of 
vibration in a structure, or in making measurements in a 
servo-loop, the denominators of all the measurements 
should contain the same characteristic polynomial.  In the 
case of structural resonances, this is equivalent to saying 
that modal frequencies and damping are the same, no matter 
where they are measured on the structure. Alternatively, the 
poles of a servo-loop can be identified from measurements 
between any two points in the loop. 

As pointed out earlier, one of the advantages of formulating 
the solution equations is terms of orthogonal polynomials is 
that the unknown characteristic polynomial coefficients {D} 
can be determined independently of the numerator 
coefficients {C}. (Refer to equations (21) and (22).) 

Therefore, we can repeatedly apply equation (21) to several 
different measurements and, assuming that each 
measurement contains the same characteristic polynomial, 
determine multiple estimates of the polynomial coefficients.  
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Expression (32) contains the repeated application of solution 
equations (21) to (p) different measurements.  If the 
characteristic polynomial has (n) unknown coefficients, 
then expression (32) contains (n x p) equations. This is an 
over specified set of equations since only (n) equations are 
needed to solve for the unknown coefficients {D}.  In this 
case, we can find a 1east squared error solution to equation 
(32) by solving equation (33).  Expression (33) is again a set 
of (n) equations which provides a best estimate of the 
characteristic polynomial coefficients {D} by using 
measurement data from (p) different measurements. 

CHARACTERISTIC POLYNOMIAL 
FROM MULTIPLE MEASUREMENTS 
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FIGURE 19 

Again, once  the orthogonal polynomial coefficients {D} are 
known, the ordinary polynomial coefficients {B} can be 
computed, as discussed earlier. 

ILLUSTRATIVE EXAMPLES 

Several examples of the use of the polynomial curve fitting 
algorithm are given here. These examples also point out 
some common problems which occur with all curve fitters. 

Compensation for Out-of-Band Resonances 

FRF measurements are always made over a limited 
frequency range by exciting the structure or system with 
some broad band signal.  As a consequence, the 
measurements will typically contain the residual effects of 
resonances which lie outside of the measurement frequency 
range.  In addition, we normally curve fit the measurement 

data only in a more limited frequency range surrounding the 
resonance peaks.  Hence, to give accurate results, all curve 
fitters must somehow compensate for the residual effects of 
resonances which lie outside of the curve fitting frequency 
range. 

SYNTHESIZED FRF 

 

FIGURE 20 

With this curve fitter, out-of-band effects can be 
approximated by specifying additional terms for either the 
numerator or the denominator polynomial.  Figure 20 shows 
an ideal measurement which was synthesized using the 
parameters listed below it. 

SINGLE DOF (or MODE) FITTING 

First, we will use the polynomial fitter to identify each of 
the resonances, one 

at a time.  To model a single mode (or degree-of-freedom), 
the characteristic polynomial need only be a quadratic 
polynomial of degree n=2. 

Normally, the numerator polynomial for a single degree-of-
freedom system would have degree m=l.  However, if we 
attempt to fit the data in the vicinity of each of the 
resonance peaks in Figure 20, the effects of the other 
resonances will cause large errors in the parameter 
estimates.  So, to compensate for these out-of-hand 
resonances, we will add four additional terms to the 
numerator polynomial, making m=5. 

Figure 21 shows same results of using this single made fitter 
on various bands of data in the synthesized measurement.  
Notice that a proper choice of data around each resonance 
peak, (indicated by the pair of dashed cursor lines), gives 
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reasonably good curve fit functions.  (The fit function is also 
plotted between the cursors.)  However, some of the 
estimates of the modal parameters are in error by substantial 
amounts. 

MULTIPLE DOF FITTING 

We can simultaneously identify the parameters of two (2) or 
all three (3) of the resonances by increasing the degree of 
the polynomials in the curve fitter. 

SINGLE DOF CURVE FITTING 

 

 

FIGURE 21 

In a typical curve fitting situation we might want to identify 
the parameters of the 10 and 12 Hz modes by using a 2-
DOF model.  This means setting n=4, m=3, and then 
curve fitting a band of data which includes the two 
resonance peaks.  The results are shown in Figure 22. 

It is clear that the parameters of the first two modes cannot 
be identified without some form of compensation for the 
third mode.  Again, we can attempt to compensate for the 

effects of the third out-of-band mode by adding more terms 
to the numerator polynomial. Figure 22 also shows the 
results of this curve fit with n=4, m=7.  In this case, the 
additional numerator terms do an excellent job of 
compensating for the third mode. 

Finally, we can also compensate for the third out-of-band 
made by adding another DOF to the denominator.  Figure 22 
shows the results of the curve fit with n=6, m=5.  Notice 
that this fit function is, as expected, a perfect match to the 
idealized FRF measurement, and that even the 60 Hz mode 
which lies far outside the curve fitting band is also correctly 
identified. 

FREQUENCY RESOLUTION 

All digital spectrum analyzers have finite length data 
memories, which means that their measurements are 
represented by a finite number of data points over some 
chosen range of frequencies.  The frequency resolution of a 
particular measurement then is, is equal to the frequency 
range of the measurement divided by the number of data 
points, or frequency values, of the measurement.  For 
instance, a typical measurement might be made with 256 
lines, or frequency values, over a 100 Hz range giving a 
resolution of .39 Hz. 

The polynomial curve fitter can encounter two different 
problems due insufficient :frequency resolution, 

1. There are not enough data points in the vicinity of the 
resonances to identify the modal parameters, or 

2. The orthogonal polynomials are under sampled over the 
chosen frequency range, thus causing the orthogonality 
condition to break down. 

Figure 23 shows two examples of the same synthesized 
FRF, as in Figure 20, but the first function has only 1/20th as 
much resolution, and the second function has 1/10th as much 
resolution as the function in Figure 20.  The first problem 
caused by insufficient resolution is determining how many 
modes are present in the data.  In the first example, one 
would probably say there is one mode and attempt to 
identify parameters for only one mode.  The answer is 
clearly in error. In the second example, there is some slight 
evidence of the existence of two modes, and since the data 
is an ideal FRF, the curve fitter has no trouble identifying 
the modal parameters correctly. 
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MULTIPLE DOF CURVE FITTING 

 

FIGURE 22 

INSUFFICIENT FREQUENCY RESOLUTION 

 

FIGURE 23 

MEASUREMENTS WITH NOISE 

Since the curve fitting equations were formulated in such a 
manner as to yield least squared error estimates of the 
polynomial coefficients, the curve fitter should be able to 
identify modal parameters from measurements containing 
additive white noise. 

Figure 24 shows examples of the same measurement as in 
Figure 20, but with various amounts of random noise added 
to it.  When a measurement contains noise (and all real 
world measurements contain some noise), then it becomes 
more clear that curve fitting can be characterized as a data 
reduction process.  That is, we wish to use as much 
measurement data as we can, especially in the vicinity of the 
resonance peaks, in order to identify a few system 
parameters.  As a general rule, the more data that is used in 
curve fitting, the more accurate the parameter estimates 
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should be.  The examples in Figure 24 confirm that 
acceptable modal parameter estimates can still be obtained 
from noisy measurements, 

CONCLUSIONS 

We have presented here a new formulation of a parameter 
estimation technique using rational fraction polynomials, 
which we have found to be practical implementation in 
small computers. 

This technique has been implemented in several 
commercially available modal analysis systems, which are 
in wide use today.  It has also been implemented in a 
parameter estimation package which runs on desktop 
computers.  We have used it on a wide variety of 
measurements which contained various degrees of noise and 
modal density, and which were taken from lightly damped 
as well as critically damped systems. 

We have found this Rational Fraction Polynomial (RFP) 
method to be comparable to the Complex Exponential 
method in terms of execution speed and accuracy.  As 
mentioned earlier, the strongest drawback of the Complex 
Exponential method is that the impulse response can be 
severely distorted by wrap-around error, whenever FRF 
measurements with significant truncation, or non 
periodicity, are used.  This distortion, plus the effects of 
resonances outside the curve fitting frequency band, can 
only be compensated for by greatly over specifying the 
number of modes (i.e. degree of the characteristic 
polynomial) during curve fitting.  However, this often yields 
a set of unusable parameters since it is not clear which 
parameters should be "thrown away" and which ones should 
be kept. 

All curve fitting algorithms can give erroneous results, 
though, if the degree of the curve fitting function is over 
specified.  On the other hand, we usually use curve fitters 
over a limited frequency range, so the effects of resonances 
outside the band must be compensated for in some manner.  
With the RFP method, specifying additional terms for only 
the numerator polynomial is often sufficient for 
compensating for these residual effects.  This allows some 
control over the degree of the characteristic polynomial. 

In modal analysis, the number of modes in a given 
frequency band is usually established beforehand, and then 
parameters for those same modes are identified from a set of 
multiple measurements.  The number of modes is normally 
determined by counting resonance peaks in the 
measurements.  Since modes have different strengths, (or 
amplitudes) from one measurement to another, it is often 
difficult to tell from a single measurement how many modes 
are contained in an entire set of measurements. 

 

MEASUREMENTS WITH NOISE 

 

FIGURE 24 

One proposed approach is to use the multiple measurement 
algorithm presented in this paper to determine the total 
number of modes, together with "global" estimates of modal 
frequency and damping for a structure.  This procedure 
would require some measure of "goodness of fit" which 
could then be optimized as a function of the total number of 
modes. 

In summary, we can conclude that the salient features of the 
parameter estimation method presented here are that it is 
sufficiently fast and accurate for use in desktop and mini-
computers.  In addition, it is non-iterative, and works 
directly with FRF data in the frequency domain.  On the 
other hand, it suffers the same consequences as any other 
method when the measurements contain excessive noise or 
distortion, or they lack sufficient frequency resolution. 
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