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The Fourier transform is a mathematical procedure that was 
discovered by a French mathematician named Jean-
Baptiste-Joseph Fourier in the early 1800's. It has been used 
very successfully through the years to solve many types of 
engineering, physics, and mathematics problems. The Fou-
rier transform is defined for continuous (or analog) func-
tions, and is usually applied in situations where the func-
tions are assumed to be continuous. More recently however, 
it has been implemented in digital form in various types of 
analyzers. These analyzers compute digital (or sampled) 
forms of power spectrums, frequency response functions, 
and other types of frequency domain functions from meas-
ured (sampled) time domain signals. 

The implementation of the Discrete Fourier Transform, or 
DFT, became practical in 1965 when Cooley and Tukey 
described an algorithm for computing the DFT very effi-
ciently. Their algorithm (and others like it) has become 
known as the Fast Fourier Transform (FFT). 

Using the FFT algorithm, present day mini-computer based 
analyzers can compute a DFT in milliseconds where it used 
to take hours using standard computational procedures. 

Direct computation of the DFT on an N-point complex val-
ued function requires N² operations; where an operation is 
defined as one multiplication plus an addition. The Cooley-
Tukey algorithm takes approximately N log2 N operations; 
where N is a power of 2. Table 1 indicates how much longer 
it takes to compute a DFT by direct computation compared 
to the Cooley-Tukey algorithm, for typical data record sizes. 

N N²/N log2 N 
256 32 
512 57 

1024 102 
2048 186 
4096 341 
8192 630 

Table 1-Direct vs. FFT computation of DFT. 

Many other methods for efficiently computing the DFT have 
since been discovered. However, all methods which require 
on the order of N log N operations have become known as 
FFT's. 

The properties of the Fourier transform, and its cousin the 
Laplace transform are quite extensively documented, and 
their use as mathematical tools is taught in most undergrad-
uate engineering curriculums today. However the use of the 

DFT, and the problems encountered with its application to 
measured time domain signals are not generally understood. 

In this section all the fundamental concepts associated with 
the use of the DFT are presented. 

We begin by examining the Fourier transform and some of 
its properties, and then show how a fundamental concept 
called "windowing" can be applied to the Fourier transform 
to derive the DFT and all of its properties. Using the convo-
lution property, or as we will call it here, the windowing rule 
of Fourier transforms, we will define the concepts of sam-
pling, aliasing, leakage and the wrap-around error. These are 
all important concepts which must be understood in order to 
avoid significant errors in the application of the DFT to 
measured data. 

The Fourier Transform - The forward Fourier transform is 
defined as the integral 

( ) ( )X f x t e dtj ft= −

−∞

∞

∫ 2π
 (1) 

The inverse Fourier transform is defined as the integral 

( ) ( )x t X f e dfj ft=
−∞

∞

∫ 2π
 (2) 

X(f) is the (complex) Fourier transform of x(t), where f and t 
are real variables. We will assume that t is the time variable 
(in seconds) and f is the frequency variable (in Hertz), alt-
hough this transform can be used in many other applications 
where these variables have different meanings. Normally 
x(t) is a real valued function of time but this restriction is not 
at all necessary. X(f) represents its corresponding frequency 
domain function. 

The two functions x(t) and X(f) are known as a Fourier 
transform pair. There is a unique Fourier transform X(f) cor-
responding to each function x(t). Thus knowing X(f) is 
equivalent to knowing x(t) and visa-versa. X(f) and x(t) are 
really two different representations of the same phenome-
non. If the phenomenon is known in terms of x(t), then 
equation (1) shows how X(f) is represented in terms of x(t). 
Likewise if X(f) is known, equation (2) shows how x(t) is 
represented in terms of X(f). 

Table 2 lists some commonly used Fourier transform pairs. 
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Time Domain Function Frequency Domain 
Function 

Auto Correlation Auto Power Spectrum 
Cross Correlation Cross Power Spectrum 
Impulse Response Frequency Response 

Table 2 - Fourier transform pairs. 

Correlation Functions and Spectral Products - A power 
or energy density spectrum is defined as follows: 

( ) ( ) ( )G f X f X fxx = *  (3) 

Gxx(f) is a spectrum obtained by multiplying X(f) by its own 
conjugate X* (f). Gxx(f) is real and positive at all frequen-
cies. The inverse Fourier transform of Gxx(f) is called the 
autocorrelation function of x(t) and is therefore written as 
the integral 

( ) ( )R t G f e dfxx xx
j ft=

−∞

∞

∫ 2π  (4) 

This autocorrelation function is usually real valued, but not 
necessarily positive for all values. 

The cross power spectrum is defined as 

( ) ( ) ( )G f Y f X fyx = *  (5) 

where both Y(f) and X(f) are Fourier transforms obtained 
from the functions y(t) and x(t). The inverse transform is 
called the cross-correlation function, and can be written as 
the integral 

( ) ( )R t G f e dfyx yx
j ft=

−∞

∞

∫ 2π  (6) 

This quantity is usually real valued. 

The frequency response function (also called the transfer 
function) is computed as the ratio of the cross power spec-
trum over the auto power spectrum, i.e. 

( ) ( )
( )H f G f

G f
yx

xx
=  (7) 

and its inverse Fourier transform is the impulse response 
function. 

Another frequency domain function often used in conjunc-
tion with the frequency response function is the coherence 
function. It is computed as the ratio of the magnitude 
squared of the cross power spectrum divided by the product 
of the input and output auto power spectrums, i.e. 

( ) ( )
( ) ( )[ ]γ 2

2

f
G f

G f G f
yx

xx yy

=  (8) 

The coherence function is real valued having values between 
zero and one. 

Figure 1 shows one of the transform pairs, the impulse re-
sponse and frequency response function, plotted along the 
time and frequency axes respectively. 

 
Figure 1—Plot of Fourier transform pair. 

Notice that the frequency function X(f) exhibits some sym-
metry about the origin (f = 0) of the frequency axis. That is 
the real part Re [X(f)] satisfies the equation 

Re [X(f)] = Re [X(-f)] 

and the imaginary part Im [X(f)]satisfies 

Im [X(f) ] = - Im [X(-f)] 

Re [X(f)] is called an even function and Im [X(f)] an odd 
function. 

Another way of saying this is that the function value for 
negative frequencies is the complex conjugate of the func-
tion value for the corresponding positive frequency, i.e. 

X(f) = X*(-f) 

This property is called Hermitian symmetry. It is the result 
of the following general rule. 

Symmetry Rule: The Fourier transform of a real valued 
function is Hermitian symmetric about the origin in the oth-
er (transform) domain. 
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Because of the Hermitian symmetry, normally only the val-
ues of the frequency function X(f) for non-negative fre-
quencies are displayed on the CRT of a Fourier analyzer. It 
is important to keep in mind however that the complete 
function X(f) also includes the conjugate values for negative 
frequencies. 

Windowing - In practice we usually measure some signal 
x(t) which corresponds to the phenomenon we wish to ana-
lyze, e.g. motion, pressure, temperature, etc. This analog 
signal x(t) is commonly measured as an electrical voltage, 
and it could be processed using analog techniques to per-
form the indicated multiplication and integration of equation 
(1) to obtain the Fourier transform of the signal. However 
this is impractical and is not done in commercially available 
instrumentation today. 

Moreover, a more serious drawback to obtaining a Fourier 
transform is that we can't measure the signal x(t) over the 
infinite interval (-∞, ∞), but only over some finite interval 
(t1,t2) as shown in Figure 2. Hence we never measure the 
entire signal x(t) but only a "windowed" version of it, ( )x t . 
The windowed  

 
Figure 2 - Truncating the time signal. 

signal x(t) can be thought of as the entire signal x(t) multi-
plied by the windowing function w(t), where w(t) is equal to 
1 in the interval (t1,t2) and zero elsewhere. 

Secondly, the DFT works with digital or sampled data. This 
sampling process can also be thought of as a multiplication 
of the continuous signal by a sequence of unit amplitude 
impulses as shown in Figure 3. Hence the sampled data is 
really the continuous data multiplied by a "sampling" win-
dow or function.  

This windowing of the signal brings into effect a fundamen-
tal rule of the Fourier transform. 

 
Figure 3 - Sampling the time signal. 

Windowing Rule: If two functions are multiplied together in 
one domain their Fourier transforms are convolved together 
in the other domain. 

Convolution is a simple mathematical procedure but is 
somewhat difficult to grasp conceptually without working 
out an example. Convolution is defined by the integral 

( ) ( ) ( )c t x y t d= −
−∞

∞

∫ τ τ τ  

Figure 4 depicts the process for two rectangular functions 
x(t) and y(t). The function c(t) is computed by sliding the 
function y(-t) in the time direction and summing up (inte-
grating) the products of the two functions where they inter-
sect. After y(-t) has completely passed by x(t) the function 
c(t) is complete. 

 
Figure 4 - Convolution of two functions. 

The Discrete Fourier Transform (DFT) - The need for 
calculation of the Fourier transform has become increasingly 
important over the years, partly because the cost of comput-
ers has been steadily declining, and partly because the diffi-
culty and sophistication of our measurements has been 
steadily increasing. The continuous transform theory is very 
useful for theoretical work, but is not suited for calculation 
with instrumentation techniques. To compute the DFT we 
must work with sampled versions of our functions in both 
the time and the frequency domains, and our functions are of 
limited duration in both domains. 

It is possible to either develop the DFT from basic axioms, 
or to derive it from the continuous Fourier transform. We 
will take the latter approach, because one or our main goals 
will be to relate the results of our discrete measurements and 
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calculations to the results that we expect from application of 
the Fourier transform to continuous signals. 

Sampled versus Continuous Data 

There are three modifications that must be made to the time 
function x(t) and its transform X(f), in order to represent 
these functions in digital instrumentation. 

It is therefore convenient to describe this process of convert-
ing continuous data to discrete data as three distinct steps or 
operations. A thorough understanding of these processing 
steps, and the order in which they occur, should eliminate 
most of the confusion that might arise concerning the inter-
pretation of various DFT results. 

1. x(t) must be multiplied by a time window w(t) of dura-
tion T to obtain a time record of finite extent. This results in 
the convolution of the spectrum X(f) with the transform of 
w(t). This transform is called the line shape of w(t) and de-
noted by L(f). 

2. x(t) = x(t) w(t) must be sampled N times at ∆t intervals 
in anticipation of storage in a digital memory. Thus, T = 
N∆t. This is done by multiplying the windowed time func-
tion by a second "sampling function" known as the SHAH 
function. This causes replication of the frequency function 
at intervals 1/∆t along the frequency axis. 

3. Finally, it is necessary to restrict the resulting frequency 
function to a finite number of samples in order to store the 
result in a digital memory. The frequency function is sam-
pled N times at ∆f intervals. Thus 2Fmax = N∆f if we sample 
the function over an interval (-Fmax, Fmax). This sampling is 
done by multiplying the frequency function by another 
SHAH function which causes replication of the time func-
tion at intervals 1/∆f along the time axis. 

These three essential steps are illustrated in both domains by 
the example in Figure 5. Here, the original time function is a 
cosine function of frequency (fo), and its true frequency 
spectrum is a pair of delta functions located at frequencies 
±fo. We have applied a rectangular window w(t) in the time 
domain, corresponding to the frequency 

 
Figure 5 - The three steps to convert continuous data to dis-

crete data. 

domain convolution with the line shape L(f) = (sin πf)/ πf. 
Notice that each delta function is "smeared" by L(f) and 
causes intermixing of various frequencies. This phenomenon 
is called leakage, and will be discussed in more detail later. 
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The time function is sampled at intervals of ∆t, and the 
smeared frequency spectrum is reproduced at Intervals of 
1/∆t along the frequency axis. Notice that there is some over 
lap of these replicated spectra. This overlap effect is called 
aliasing, and will also be discussed more fully in a later 
section. 

Finally, the replicated spectrum is sampled at ∆f intervals, 
causing the truncated time function to be replicated at 1/∆f 
intervals, and becoming periodic with a 1/∆f period. The net 
result is a periodic sequence of N samples per period in each 
domain. Since each function can be described entirely if one 
period is known, it is only necessary to store the N samples 
of one period. 

It should be apparent that the final discrete frequency spec-
trum appears to be substantially different from the true spec-
trum. However in the following sections where each of 
these steps is examined in more detail, techniques for mini-
mizing these errors will be discussed. 

Returning to the definition of the Fourier transform eq. (1), 
if we now let f = m∆f, t = n∆t and if we assume that x(t) has 
non zero values only at the times t = n∆t for N values of n 
and that X(f) has non-zero values only at the frequencies f = 
m∆f for N values of m then the Discrete Fourier Transform 
becomes 

( ) ( )X m f t x n t e

m N

j mn N

n

N
∆ ∆ ∆=

= −

−

=

−

∑ 2

0

1

0 1

π /

,

 

Likewise the Inverse Discrete Fourier transform is written 

( ) ( )x n t f X m f e

n N

j mn N

m

N
∆ ∆ ∆=

= −
=

−

∑ 2

0

1

0 1

π /

,

 

where T = N∆t = 1/∆f. The independent variables are now 
the pair of indices m and n. X(m∆f) has discrete values at 
intervals of ∆f = 1/T, and is periodic with period 1/∆t, while 
x(n∆t) has discrete values at intervals of ∆t, and is periodic 
with period T. Each sequence comprises N numbers, which 
may be real or complex. If x(n∆t) is real, then X(m∆f) will 
be Hermitian. Thus, only the positive half-period of X(m∆f) 
need be calculated. There are exactly N independent num-
bers that describe the transform function in each domain. In 
the time domain, there are N real samples of the time func-
tion, and in the frequency domain there are (N-1)/2 complex 
numbers for the range 1<m<(N/2)-1, and 2 real numbers for 
m = 0, N/2. If x(n ∆t) is complex, then there are 2N real 
numbers in each domain, and a full period of X(m∆f) is 
needed. 

It should be apparent that the DFT is ideally suited for han-
dling digital data. The DFT is, strictly speaking, a relation 
between sequences of sample coefficients, whereas the actu-
al time and frequency functions are comprised of sequences 
of delta functions. As previously discussed, the functions 
can be obtained by scaling the impulses of a SHAH function 
with these coefficients over the appropriate interval in either 
domain. Hence, the sequence of sample coefficients can be 
thought of as a sampled function, with the implication that 
the SHAH function may be introduced when necessary. 

It should also be emphasized that the DFT gives the correct 
Fourier transform for sampled periodic data. If the original 
time function x(t) is indeed periodic, such that the time win-
dow width T is an integer number of periods, and if the fre-
quency spectrum is band-limited so as not to exceed 
±1/(2∆t), then the DFT will produce the correct spectrum 
without any leakage or aliasing. Sometimes these re-
strictions are met, but generally there is both leakage and 
aliasing to contend with. These anomalies are caused by the 
sampling process however, and not by the DFT. 

Time Windows - The first step in converting a long contin-
uous time function into a finite sequence of data samples is 
truncation of the time signal. We define a time window w(t), 
such that w(t) = 0 outside some time interval of duration T. 
This interval may be anywhere along the time axis, but we 
generally either begin the interval at t = 0, or center the in-
terval about the origin. Regardless of where we choose the 
interval, only the phase of the frequency function is altered 
by time displacement, and the magnitude is unchanged. For 
most of the following discussion on windows, we will as-
sume an interval centered at t = 0. 

Applying the windowing rule, we know that multiplication 
in the time domain corresponds to convolution in the fre-
quency domain. Thus, the frequency function after window-
ing is the original function convolved with the line shape of 
the window L(f). 

As an example of a common window line shape pair, con-
sider the rectangular window w(t) and its corresponding line 
shape L(f) = (sin Tf) / (f) = T sinc(Tf). These functions are 
illustrated in Figure 6.  

If the true spectrum X(f) is convolved with L(f), the result 
will be the sum of a sequence of X(f) shapes, each slightly 
displaced in frequency, and weighted by the value of L(f) at 
that displacement. Suppose, for example that x(t) = 1 before 
any windowing is attempted. Then X(f) = δ(f) is a delta 
function at the frequency origin. The introduction of a rec-
tangular window produces X(f) = T sinc(Tf), instead of the 
delta function. Thus, the convolution with a line shape 
"smears" the true frequency spectrum over a significant 
range of adjacent frequencies. This general behavior is typi-
cal of all line shapes that result from finite time windows. 
The line shape comprises a 
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Figure 6 - A rectangular time window and its corresponding 

frequency line shape. 

main lobe (analogous to antenna or optical theory) centered 
about the frequency origin, and a number of smaller side 
lobes that persist over the remaining frequency range. When 
we convolve a spectrum with a function of this sort, we find 
that the energy or power that is intended to be associated 
with a particular frequency, is in reality spread over a wide 
range of adjacent frequencies. We call this phenomenon 
leakage. It should be rather obvious that leakage can be a 
serious source of error in our measurements, unless we take 
steps to constrain this parasitic spread of energy. 

Leakage, and What To Do About It 

Leakage is always undesirable! Fortunately, it can some-
times be completely eliminated, and can always be reduced 
to an arbitrarily small amount with a suitable window. 

Leakage is completely absent when a rectangular window is 
applied to data that is exactly periodic in the window inter-
val T, and the resulting spectrum is sampled at intervals of 
∆f = 1/T. The reason becomes apparent when we observe 
that frequency domain sampling causes time domain repli-
cation, and that the replication of one cycle of a periodic 
function simply reproduces the original function. In the fre-
quency domain, the line shape sinc(ft) has nulls at all multi-
ples of 1/T along the frequency axis (except at f = 0), and 
the spectrum of the original periodic time signal has values 
only at frequencies which are multiples of 1/T. Thus, the 
convolution with sinc(fT) does not produce any interaction 
between these frequencies at multiples of 1/T. 

Obviously, if existing time signals are periodic, it is possible 
to eliminate leakage if the window width can be adjusted 
properly to encompass an integer number of data periods. In 
some cases, measurements can be made on a physical sys-
tem by applying a controlled source of excitation to the sys-
tem, in which the excitation is made suitably periodic in the 
window interval. It is necessary that the period be held as 

close to T as possible throughout the measurement interval, 
or else the spectral samples will occur at points where the 
sinc(fT) line shape is not precisely zero. 

Thus, for signals that are periodic in the window interval T. 
or for transients (whether repetitive or not) that completely 
decay within the window interval, the rectangular window is 
optimum. We assume that non-periodic noise is negligible in 
these cases. Other windows may be used, but the result will 
be a considerable and unnecessary loss in frequency resolu-
tion. 

When x(t) contains a significant amount of random noise, 
such noise is not periodic in the window interval T. Thus, 
the measured noise spectrum will have considerable leakage. 
If the shape of the noise spectrum is of particular interest, it 
is necessary to choose a window with less leakage than the 
rectangular shape. 

When x(t) is not periodic in the window interval T. we must 
use a window whose line shape is a compromise between 
small side lobes and a narrow main lobe. The side lobes can 
always be made arbitrarily small, at the expense of main 
lobe broadening. Thus, it is always necessary to balance the 
desired frequency resolution against the deleterious effects 
of leakage. The optimum choice depends on the application. 
One window that is commonly used with non-periodic ran-
dom data is the Hanning window, shown in Figure 7. 

 
Figure 7 - Windows and their line shapes. 

Sampling In the Time Domain - Since the DFT operates on 
digital or sampled data, the measured time domain signal 
must be sampled, and the resulting numbers stored in 
memory. 

Ideal sampling is the process of observing a continuous sig-
nal only at discrete instants of time. The FFT algorithm as-
sumes that the signal is sampled uniformly, i.e. the time pe-
riod between successive samples remains constant. 

The sampling process may be viewed as the multiplication 
of a continuous signal by a sequence of unit amplitude delta 
functions. This sequence of delta functions, called the 
SHAH function, is shown together with its Fourier trans-
form in Figure 8a. Note that if we sample the signal with a 
period t between samples, the Fourier transform of the 
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SHAH function is another SHAH function with impulses 
separated by a frequency equal to the sampling frequency 
(fs = 1/∆t). 

 
Figure 8 - The effect of sampling. 

Applying the windowing rule, we see that multiplication of 
the continuous signal by a SHAH function in the time do-
main results in a replication of the Fourier transform of the 
signal in the frequency domain, due to the convolution of its 
transform with another SHAH function. 

Figure 8a shows the spectrum of a "band limited" signal, i.e. 
its spectrum (Fourier transform multiplied by its conjugate) 
contains non-zero values only in the interval (-Fmax, Fmax) 

Figures 8c, 8d and 8e show the effects of sampling the time 
domain signal at slower and slower rates. It is clear that as t 
becomes larger, 1/t becomes smaller and the replicated Fou-
rier transform of the signal begins to overlap upon itself, as 
shown in Figure 8e. This overlapping of the frequency do-
main function upon itself is called aliasing. 

In practice two different methods can be used to prevent 
aliasing 

1. Sample a known band limited signal at a high enough 
rate. If a signal is known to be band limited in the interval 
(-Fmax, Fmax), then sampling it at a rate fs = 2Fmax is suffi-
cient to prevent aliasing. Fmax is called the Nyquist rate. 

2. If the bandwidth of the signal is unknown, band-limit it 
by passing it through an analog low pass (antialiasing) filter 
before sampling it. Then follow step 1 above. 

Most antialiasing filters can be characterized by a line shape 
in the frequency domain as shown in Figure 9. Their rolloff 
rate varies with design but most commercially available 
filters will adequately bandlimit a signal if their cutoff fre-
quency (fc) equals Fmax/2. Hence a safe rule of thumb for 
preventing aliasing in a signal of unknown bandwidth is to 
analog filter it using a cutoff frequency of Fmax/2 and sample 
it using a sampling frequency of 2 Fmax. Useable data is then 
in the range (-Fmax/2, Fmax/2). 

 
Figure 9 - Antialiasing filter line shape. 

Frequency Domain Sampling - The last of the three pro-
cessing steps is to multiply the frequency function by some 
suitable sampling function in the frequency domain. This 
step is necessary so that we can evaluate the Fourier trans-
form with a finite number of calculations, and so that we can 
store the results in a finite digital memory. We know that this 
technique of frequency sampling is permissible, provided we 
sample at uniform intervals no greater than ∆f = 1/T, be-
cause this implies that the corresponding time function will 
be replaced with a period no smaller than T. Since our time 
window width is T, this sampling interval will insure that no 
time overlap occurs during this replication step. 

Quadratic Frequency and Correlation Domains - We are 
often interested in measurements involving the product of 
two frequency functions, either in the form of an auto-power 
spectrum, or a cross-spectrum between two related quanti-
ties. As discussed earlier, the inverse Fourier transforms of 
these frequency quantities are called correlation functions. 

Applying the windowing rule once again, multiplication of 
two functions together in the frequency domain causes con-
volution of the inverse transforms in the time domain. 

The convolution process for the discrete transform differs 
from the continuous transform in that it is circular in nature. 
That is, we are always convolving periodic functions, so the 
convolution with one period of a function overlaps that of 
adjacent periods. It might be helpful to visualize one period 
of each function wrapped around a cylinder of the appropri-
ate radius. All displacements associated with the convolution 
operation can be pictured as incremental rotations of one 
waveform with respect to the other around the circumfer-
ence of this cylinder. Thus, as a portion of a function moves 
past the t = T boundary of the time window, it immediately 
reappears at t = 0. 

In Figure 10, we see that a rectangle of width T. convolved 
with itself, produces a triangle of width 2T. However, when 
we sample the resulting spectrum at intervals of 1/T, we 
replicate this composite time function at intervals of T. and 
the sum of these multiple images is a constant. This is obvi-
ously quite different from the true triangular shape. The 
"tails" of the expected triangle are "wrapped-around" the 
cylinder, and fill in the remaining portion of the triangle, 
producing a rectangle. 

Page 7 of 8 



Sound & Vibration Magazine  March, 1978 

Figure 10 - The wrap-around effect caused by sampling a 
quadratic frequency spectrum at 1/T intervals instead of 
1/2T intervals 

When overlap of periodic time functions occurs this is 
called wrap-around error. This is completely analogous to 
aliasing in the frequency domain and is sometimes called 
time domain aliasing. As with aliasing, this phenomenon is 
caused by undersampling the product of two functions 
which have been multiplied together in the frequency do-
main. If some wrap-around does occur, it means that the 
multiplication of two frequency domain functions has pro-
duced a frequency spectrum that cannot be adequately rep-
resented by samples spaced 1/T apart. Generally speaking, 
the product of k functions can introduce additional fine de-
tail into the result which requires finer sampling by a factor 
k to completely represent the product. 

In many cases, the sum of the widths of the individual time 
functions is effectively less than T, so when these functions 
are convolved together, the composite width is also effec-
tively less than T, and the wrap-around effect is absent, or at 
least negligible. Otherwise, this phenomenon causes signifi-
cant errors in the convolution or correlation process, particu-
larly near the ends of the time interval. 
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