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Is It a Mode Shape or an Operating Deflection Shape? 
Mark H. Richardson, Vibrant Technology, Inc., Jamestown, California

Abstract 

Mode shapes and operating "deflection" shapes are relat-
ed to one another.  In fact, one is always measured in or-
der to obtain the other.  Yet, they are quite different from 
one another in a number of ways.  This article discusses 
the relationships between modal testing, modal analysis 
and operating deflection shape measurements. 

Introduction 

The question, "Is it a mode shape, or an operating deflection 
shape?" is probably asked more often than any other when 
testing structures, especially when attempting to identify 
their resonant or modal properties.  Another way that it is 
asked is, "When the excitation changes, the mode shape 
changes. What's going on here?" 

The subject of mode shapes versus operating deflection 
shapes has certainly been written about before. In fact, a 
previous Sound and Vibration magazine article [1] covered 
them quite extensively.  I recommend that you read that 
article, because it provides valuable insight and contains a 
number of examples.  To shed more light on this subject, I 
will point out other similarities and differences between the 
two types of shapes, and discuss the measurements required 
to obtain each of them. 

Over the past 20 years, the number of ways in which modal 
testing has been done has proliferated greatly.  Traditionally, 
most modal testing was done using sine wave based meth-
ods and analog instrumentation.  During the late 1960s 
however, the discovery of the Fast Fourier Transform (FFT) 
algorithm and the use of digital computers in laboratory 
testing systems allowed experimentalists to begin exploring 
the use of new excitation and signal processing techniques 
for modal testing. 

Because the FFT provides the frequency spectrum of a sig-
nal in fractions of a second, various kinds of broadband ran-
dom, swept sine, and transient signals, which excite many 
frequencies at once, could be used to excite structures and 
measure their responses.  Impact testing has become the 
most popular modal testing method today.  It can be done 
rather quickly and inexpensively using an instrumented 
hammer, an accelerometer, a 2 channel FFT analyzer, and 
post processing software.  Also, the availability of lower 
cost transducers, PC based data acquisition systems, porta-
ble data collectors, desktop and notebook computers, and 
more powerful software have all helped to put modal testing 
into the hands of more practitioners. 

Nevertheless, modal analysis has often been shrouded in a 
veil of mystery, while the concept of an operating deflection 
shape has remained relatively straightforward. Ole Dossing 
began his article with the statements, 

"Operational deflection shapes (ODSs) can be measured 
directly by relatively simple means.  They provide very use-
ful information for understanding and evaluating the ab-
solute dynamic behavior of a machine, component or an 
entire structure.'' 

This suggests that maybe mode shapes are not so easy to 
measure.  If not, then why not. 

What Are Modes? 

Modes are associated with structural resonances.  The ma-
jority of structures can be made to resonate.  That is, under 
the proper conditions, a structure can be made to vibrate 
with excessive, sustained motion.  Striking a bell with a 
hammer causes it to resonate.  Striking a sandbag, however, 
will not cause it to resonate. 

Resonant vibration is caused by an interaction between the 
inertial and elastic properties of the materials within a struc-
ture.  Furthermore, resonant vibration is the cause of, or at 
least a contributing factor to, many of the vibration related 
problems that occur in structures and operating machinery.  
These problems include failure to maintain tolerances, noisy 
operation, uncontrollability, material failure, premature fa-
tigue, and shortened product life. 

To better understand a structural vibration problem, we need 
to characterize the resonances of a structure.  A common and 
useful way of doing this is to define its modes of vibration.  
Each mode is defined by a modal frequency, modal damp-
ing, and a mode shape. 

Can we define modes experimentally by measuring operat-
ing deflection shapes, which are easy to measure? To answer 
this question requires a better understanding of mode shapes 
and operating deflection shapes. 

What Are Operating Deflection Shapes? 

Traditionally, an ODS has been defined as the deflection of 
a structure at a particular frequency.  However, an ODS can 
be defined more generally as any forced motion of two or 
more points on a structure.  Specifying the motion of two or 
more points defines a shape.  Stated differently, a shape is 
the motion of one point relative to all others.  Motion is a 
vector quantity, which means that it has location and direc-
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tion associated with it.  This is also called a Degree Of 
Freedom, or DOF. 

An ODS can be defined from any forced motion, either at a 
moment in time, or at a specific frequency.  Hence, an ODS 
can be obtained from different types of time domain re-
sponses, be they random, impulsive, or sinusoidal.  An ODS 
can also be obtained from many different types of frequency 
domain measurements, including linear spectra (FFTs), 
cross and auto power spectra, FRFs (Frequency Response 
Functions), transmissibilities, and a special type of meas-
urement called an ODS FRF 

Mode Shapes and ODS's Contrasted 

Modes are inherent properties of a structure.  They don't 
depend on the forces or loads acting on the structure.  
Modes will change if the material properties (mass, stiff-
ness, damping properties), or boundary conditions (mount-
ings) of the structure change.  Mode shapes don't have 
unique values, and hence don't have units associated with 
them.  However, mode shapes are unique.  That is, the mo-
tion of one point relative to another at resonance is unique.  
We will see later that all of these conclusions can be drawn 
from the mathematical definition of a mode of vibration. 

ODSs are quite different from mode shapes.  They depend 
on the forces or loads applied to a structure.  They will 
change if the load changes.  ODSs can have units, typically 
displacement, velocity, or acceleration, or perhaps dis-
placement per unit of excitation force.  They can be used to 
answer the question, "How much is the structure really 
moving, at a particular time or frequency?"  Finally, ODSs 
can be defined for nonlinear and non stationary structural 
motion, while mode shapes are only defined for linear, sta-
tionary motion.  ODSs can also be defined for structures that 
don't resonate.  Modes are only used to characterize reso-
nant vibration. 

Analytical and Experimental Modes 

Modes are a mathematical concept or construct, and are a 
convenient way of describing resonant vibration.  Modes 
can be determined both analytically and experimentally. 
Analytically speaking, modes are solutions to differential 
equations of motion that describe the linear, stationary vi-
bration of a structure.  Experimentally, all modal testing is 
done by measuring ODSs, and then interpreting or post 
processing them in a specific manner to define mode 
shapes. 

Traditional Modal Testing 

Modal testing has traditionally been done using sine wave 
excitation.  The first vibration test that I performed was with 
an eccentric shake table and a strobe light.  The out of bal-
ance rotating mass of the shake table caused it to shake 
whatever was mounted on it with a sinusoidal motion.  The 
strobe light was triggered by a tachometer signal from the 
shaker table, so that it illuminated the test structure with 
flashes of light at the same frequency as the rotational speed 

of the shaker.  Testing was done in a room with the lights 
off, so that the test article could be clearly seen.  The strobe 
light made the vibrating structure stand still for a brief mo-
ment of time, so that you could view its shape. 

The first structure that I tested was an electronic instrument 
card cage.  The card cage, full of printed circuit boards, was 
mounted securely on the shaker table.  To perform a test, 
you merely turned on the shaker and viewed the motion of 
the card cage with the strobe light.  As the rotation of the 
shaker motor was increased to higher speeds, or frequencies 
since its motion was cyclic, the PC boards in the cage began 
to exhibit excessive motions, one by one.  That is, at a spe-
cific speed of the shaker motor, one board would vibrate 
(resonate) more than the others.  At a higher speed, another 
board would resonate.  At the resonant frequency of each 
board, I thought I was observing its mode shape.  In fact, I 
was looking at its ODS. 

Normal Mode Testing 

Also early in my career, I observed a normal mode test of a 
space satellite, at the multimillion dollar testing facility of a 
southern California aerospace company.  The satellite had 
hundreds of tri axial accelerometers attached to it, each one 
carefully mounted so that it measured acceleration in three 
directions (X, Y. & Z).  Several electro dynamic shakers 
were also attached to the satellite at different points, and in 
different directions. 

The normal mode testing system consisted of several large 
bays of equipment with hundreds of small oscilloscope like 
displays in them.  (I was told that the system could only be 
operated effectively by the person who designed it.)  In the 
language of normal mode testing, the operator used the sys-
tem to tune the modes of the satellite. 

To tune a mode, he first had to find one of the structure's 
resonant frequencies.  This was done by merely varying the 
frequency of the sine wave excitation signals until the re-
sponse of the satellite peaked, indicating excessive motion. 
Then, he adjusted the amplitudes and phases of sine wave 
signals sent to the shakers until all (or as many as possible) 
of the oscilloscopes displayed patterns that looked like cir-
cles. 

These circular patterns are called Lissajous patterns.  A typi-
cal Lissajous pattern display is shown in Figure 1.  Each 
Lissajous pattern of a structural resonance is a plot of an 
acceleration response signal on the vertical axis versus a 
shaker force signal on the horizontal axis.  At the frequency 
of a structural resonance, the structure's acceleration re-
sponse is (or should be) 90° out of phase with the sinusoidal 
excitation force.  Therefore, a plot of acceleration versus 
force will trace out a "circle," (actually an ellipse with ex-
actly vertical and horizontal principal axes) just like plotting 
a sine wave versus a cosine wave. 
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Figure 1.  Lissajous Pattern Indicating a Pure Mode. 

When the Lissajous patterns of all responses look like cir-
cles, the ODS of the structure is undergoing perfect sinusoi-
dal motion in unison with the sinusoidal forces from the 
shakers.  When a mode is tuned, it is called a pure mode, 
and the structure's ODS (the measured accelerations) is as-
sumed to be its mode shape.  Is this valid or not?  We will 
look at the definition of a mode in more detail in order to 
answer this question. 

Modern Modal Testing Methods 

Soon after the discovery of the FFT algorithm in the late 
1960s, it was implemented in computer based laboratory test 
instruments called FFT or Fourier analyzers.  Not too long 
after that, in the early 1970s, a variety of new modal testing 
methods based on the use of the Fourier analyzer were de-
veloped. 

The FFT algorithm computes a discretized (sampled) ver-
sion of the frequency spectrum of a sampled time signal [4].  
This discretized, finite length spectrum is called a Discrete 
Fourier Transform (DFT).  The discovery of the FFT opened 
up a whole new area of signal processing using a digital 
computer. 

The FRF Measurement 

A fundamental measurement of any multi channel FFT 
based data acquisition system or analyzer is the tri spectrum 
average.  Tri spectrum averaging can be done on two or 
more signals that have been simultaneously sampled.  In 
this averaging process, three or more spectrum estimates are 
computed from the signals; the auto power spectrum of each 
signal, and the cross power spectrum between each pair of 
signals. A tri spectrum averaging loop is shown in Figure 9. 

One of the key uses of the tri spectrum average is the calcu-
lation of the Frequency Response Function (FRF), or trans-
fer function.  The FRF describes the input output relation-
ship between two points on a structure as a function of fre-
quency.  That is, the FRF is a measure of how much dis-

placement, velocity, or acceleration response a structure has 
at an output point, per unit of excitation force at an input 
point. 

The FRF is computed by dividing the cross power spectrum 
estimate between input and output by the input auto power 
spectrum estimate, 
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where:  S jx f, ( )ω = average cross power spectrum 
between output and input. 
S jf f, ( )ω = average auto power spectrum of the 
input. 
jω =  frequency variable. 

(This is, in fact, a least squared error estimate of the FRF in 
the presence of noise on the output signal.  Other types of 
FRF estimators have also been defined using different noise 
models, but this is the most popular one implemented in 
FFT analyzers.)  With FRF measurements, rather than excite 
a structure one frequency at a time with a sine wave, the 
structure can be excited at many frequencies, using a broad 
band signal.  Broad band signals include impulses, random 
signals, and rapidly swept sine signals (chirps). 

 
Figure 2.  FRF Measurements on a Structure. 

Each FRF measurement is computed between a sampled 
input signal and a sampled output signal.  To obtain the 
mode shapes for a structure, a minimum set of FRF meas-
urements must be taken either between a single (fixed) input 
and many outputs, or between a single (fixed) output and 
many inputs.  Figure 2 depicts the FRF measurement pro-
cess for an input fixed at point 7.  This corresponds to 
measuring the FRFs in a column of the matrix of possible 
FRF measurements. 
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Impact Testing 

With the ability to compute FRF measurements in an FFT 
analyzer, impact testing became popular during the late 
1970s as a fast, convenient, and relatively low cost way of 
finding the mode shapes of a structure.  To perform an im-
pact test, all that is needed is an impact hammer with a load 
cell attached to its head to measure the input force, a single 
accelerometer to measure the response at a single fixed 
point, a two channel FFT analyzer to compute FRFs, and 
post processing software for identifying and displaying the 
mode shapes in animation. 

In a typical impact test, the accelerometer is attached to a 
single point on the structure, and the hammer is used to im-
pact it at as many points and as many directions as required 
to define its mode shapes.  FRFs are computed one at a 
time, between each impact point and the fixed response 
point.  Modal parameters are defined by curve fitting the 
resulting set of FRFs.  Figure 3 depicts the impact testing 
process. 

 
Figure 3. Impact Testing 

Curve Fitting 

In general, curve fitting is a process of matching an analyti-
cal function or mathematical expression to some empirical 
data.  This is commonly done by minimizing the squared 
error (or difference) between the function values and the 
data.  In statistics, fitting a straight line through empirical 
data is called regression analysis.  This is a form of curve 
fitting. 

Estimates of modal parameters are obtained by curve fitting 
FRF data.  Figure 4 depicts the three most commonly used 
curve fitting methods used to obtain modal parameters. The 
frequency of a resonance peak in the FRF is taken as the 
modal frequency.  This peak should appear at the same fre-
quency in every FRF measurement.  The width of the reso-
nance peak is a measure of modal damping.  The resonance 
peak width should also be the same for all FRF measure-
ments.  The peak values of the imaginary part of the FRFs 
are taken as the mode shape, for displacement or accelera-
tion responses.  (The peak values of the real part are used 

 
Figure 4.  Curve Fitting FRF Measurements. 

for velocity responses.)  All of these very simple curve fit-
ting methods are based on an analytical expression for the 
FRF, written in terms of modal parameters [3]. 

Other Advances 

Advanced measurement and post processing techniques 
were also developed during the 1970s and 80s.  Special 
types of multi shaker random and swept sine testing were 
developed for making better FRF measurements.  These 
MIMO (Multi Input Multi Output) techniques employ spe-
cially synthesized signals to drive multiple shakers in unison 
with the acquisition of multiple response signals, and use 
matrix methods to compute FRF estimates from tri spectrum 
averages. 

Using multiple shakers can help insure that all resonances in 
a frequency band are excited, and therefore are defined in 
the FRFs.  In addition to MIMO measurements, new curve 
fitting algorithms have been developed for extracting modal 
parameters from multiple reference (poly reference) FRFs 
[6],[7]. 

The International Modal Analysis Conference (IMAC), an 
annual meeting of modal testing practitioners and testing 
equipment vendors, began in 1980, and is still held every 
year.  During IMAC each year, in excess of 200 technical 
papers are presented on many new and developing areas of 
modal testing. 

But, what is different about modern FRF based modal test-
ing methods versus traditional sine wave based or normal 
mode methods?  Why are FRF measurements necessary to 
define modes?  How is an FRF related to an ODS?  To an-
swer these questions, we'll have to dig deeper into the back-
ground math. 

Linear Dynamics 

Modes are commonly defined as solutions of the following 
linear differential equations of motion, 
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[ ]{( )} [ ]{ ( )} [ ]{ ( )} { }M x t C x t K x t+ + = 0  (2) 

where: [M], [C], and [K] are matrices with constants in 
them {( )}x t , { ( )}x t , and { ( )}x t are vectors of accelera-
tion, velocity, and displacement respectively, as functions of 
time 

Modes can also be defined as solutions to a partial differen-
tial equation called the wave equation. The wave equation is 
restricted to structures with simple geometries and homoge-
neous properties, though. 

This equation is, of course, a statement of Newton's Second 
Law; a force balance among the three types of internal forc-
es in any structure made out of elastic materials.  These in-
ternal forces are the inertial (mass), dissipative (damping), 
and restoring (stiffness) forces.  Inertial and restoring forces 
are sufficient to cause resonant vibration.  However, some 
form of damping is always present in all real structures, if 
none other than the viscous damping caused by displace-
ment of the air surrounding the vibrating structure. 

Trapped Energy Principle 

One of the most useful ways to understand resonant vibra-
tion is with the trapped energy principle.  When energy en-
ters a structure due to dynamic loading of any kind, resonant 
vibration occurs when the energy becomes trapped within 
the structural boundaries, travels freely within those bound-
aries, and cannot readily escape.  This trapped energy is 
manifested in the form of traveling waves of deformation 
that also have a characteristic frequency associated with 
them.  Waves traveling within the structure, being reflected 
off of its boundaries, sum together to form a standing wave 
of deformation.  This standing wave is called a mode shape, 
and its frequency is a resonant or natural frequency of the 
structure. 

Another way of saying this is that structures readily absorb 
energy at their resonant frequencies, and retain this energy 
in the form of a deformation wave called a mode shape. 
They are said to be compliant with external loads at those 
frequencies. 

Why, then, won't a sandbag resonate when it is struck with a 
hammer?  Energy cannot travel freely within its boundaries. 
The sand particles don't transmit energy efficiently enough 
between themselves in order to produce standing waves of 
deformation.  Nevertheless, a sandbag can still be made to 
vibrate.  Simply shaking it with a sinusoidal force will cause 
it to vibrate.  Sandbags can have operating deflection 
shapes, but don't have resonances or mode shapes. 

Local Modes 

Energy can also become trapped in local regions of a struc-
ture, and cannot readily travel beyond the boundaries of 
those regions.  In the case of the instrument card cage de-
scribed earlier, at a resonant frequency of one of its PC 
cards, energy becomes trapped within the card, causing it to 
resonate.  The surrounding card cage is not compliant 

enough at the resonant frequency of the card to absorb ener-
gy, so the energy is reflected back and stays trapped within 
the card.  The card vibrates but the cage does not. 

Many structures have local modes; that is, resonances that 
are confined to local regions of the structure.  Local modes 
will occur whenever part of the structure is compliant with 
the energy at a particular frequency, but other parts are not. 

How do we know structures behave this way?  Experimental 
observation is certainly one way.  Another way is to solve 
the equations of motion, and examine the resulting modal 
parameters. 

Solving the Equations of Motion 

To solve differential Equations (2) it is easier to transform 
them to the frequency domain where we can manipulate 
them using algebra.  Using the Fourier transform, Equations 
(2) can be rewritten, 

[ ( )]{ ( )} { }B j X jω ω = 0    (3) 

where: [ ( )] [ ]( ) [ ]( ) [ ]B j M j C j Kω ω ω= + +2  
is called the system matrix 

{ ( )}X jω  is a vector of Fourier transforms of 
displacements 

The nontrivial solution to Equation (3) is a unique set of 
complex eigenvalues and eigenvectors.  (The trivial solu-
tion is { ( )} { }X jω = 0 ).  The eigenvalues occur in com-
plex conjugate pairs.  The real part of each eigenvalue is the 
modal damping.  The imaginary part is the modal frequency. 
Each eigenvalue has an eigenvector associated with it.  Each 
eigenvector is a mode shape.  Each mode, then, is defined 
by a complex conjugate pair of eigenvalues, and a complex 
conjugate pair of eigenvectors, or mode shapes. 

What's really important here is not the mathematical details, 
which can be found in a variety of references [3], but the 
conceptual conclusions we can make regarding modes.  First 
of all, modes are unique and inherent to any structure, the 
dynamics of which can be adequately described by Equa-
tions (2) or (3).  Secondly, no external loads or forces are 
required to define modes, that is, solve Equation (3).  Third-
ly, modes will only change if the mass, damping, or stiffness 
properties of the structure are changed.  Changes in bounda-
ry conditions are also reflected by changes in the [M], [C], 
and [K] matrices, so modes will also change if the bounda-
ry conditions change. 

How Many Equations Are Required? 

Notice that Equations (2) and (3) were written with no di-
mensions on them.  That is, the equations were written using 
matrices and vectors, but how large must they be?  How 
many elements do they have in them?  Or stated differently, 
how many equations are required?  There are two funda-
mentally different ways of interpreting Equations (2) and 
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(3); one that applies to lumped parameter and finite element 
models, and the other that applies to real structures. 

Single Degree Of Freedom Vibrator 

To determine how many equations are required, let's start 
with the simplest resonant structure of all, a simple mass 
attached to ground with a spring and damper, shown in Fig-
ure 5.  This structure is called a lumped parameter system 
because its physical properties are "lumped" into the mass, 
spring, and damper elements.  The dynamics of this struc-
ture can be described with one differential equation, in 
which the mass, damping, and stiffness matrices are simply 
scalars.  The mass matrix [M] is simply the mass value, the 
damping matrix [C] is the damper coefficient, and the stiff-
ness matrix [K] is the spring coefficient. 

 
Figure 5.  Mass/Spring/Damper SDOF Vibrator 

Solving Equation (3) for its modes will yield a pair of ei-
genvalues and a pair of eigenvectors.  These two eigenval-
ues and two eigenvectors represent a single mode of vibra-
tion.  (The shapes are shown with only one DOF in them. 
The ground, with no motion, is the second component of the 
shapes.)  So, a mass on a spring has only one differential 
equation of motion, which can be solved for one mode of 
vibration. 

What about more complex structures like an instrument card 
cage or a satellite?  Obviously, it will take a lot of equations 
to represent them dynamically.  These multiple equations 
will, in turn, yield multiple modes as solutions. 

Testing Real Structures 

Real continuous structures have an infinite number of 
DOFs, and an infinite number of modes.  So, when we test a 
real structure, are Equations (2) and (3) still valid for defin-
ing its dynamics and modes?  The answer is yes, if we as-

sume that the matrices and vectors in them are still discrete, 
but infinitely dimensional.  The mass, damping, and stiff-
ness matrices, and the acceleration, velocity, and displace-
ment vectors still have discrete elements in them, but they 
are infinite in dimension.  That is, the number of equations 
we could write to describe the dynamics of a real structure is 
unbounded. 

From a testing point of view, a real structure can be sampled 
spatially at as many DOFs as we like.  There is no limit to 
the number of unique DOFs between which we can make 
measurements.  The resulting set of Equations (2), (if we 
could compute them), would then yield an infinite set of 
modes, which is what real structures have.  Experimental 
modes are actually found from a different form of the dy-
namic equations, described later. 

Nevertheless, in testing we assume a mathematical model 
that is discrete, but infinitely dimensional.  For practical 
reasons, though, we only measure a small subset of its ele-
ments.  Yet, from this small subset of measurements, we can 
accurately define the resonances that are within the frequen-
cy range of the measurements.  Of course, the more we spa-
tially sample the surface of the structure by taking more 
measurements, the more definition we will give to its mode 
shapes. 

ODSs or mode shapes of a structure are either derived di-
rectly from acquired time domain signals or from frequency 
domain functions that are computed from acquired time 
signals.  We have already discussed how FRF measurements 
are computed. 

Forced Response 

In order to make a structure vibrate, force has to be applied 
to it.  The forced linear vibration of an elastic structure is 
represented by, 

[ ]{( )} [ ]{  ( )} [ ]{ ( )} { ( )}M x t C x t K x t f t+ + =  (4) 

where: { ( )}f t  is a vector of the external forces, or loads. 

Solutions to Equation (4) are ODSs.  Recall that the defini-
tion of an ODS is the forced vibration of two or more points 
on a structure. 

FRF Matrix Model 

An equivalent frequency domain form of the dynamic mod-
el for a structure can be represented in terms of Fourier 
transforms as, 

{ ( )} [ ( )]{ ( )}X j H j F jω ω ω=    (5) 

where: [ ( )]H jω = FRF matrix 

{ )}X( jω = vector of discrete Fourier transforms 
of displacement responses. 

{ ( )}F jω = vector of discrete Fourier transforms 
of external forces. 
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Just as the time domain dynamic model is discrete but infi-
nite dimensional, this frequency domain model is also dis-
crete but infinite dimensional.  Equation (5) is valid for all 
values of frequency ( )jω , which includes all discrete fre-
quency values for which discrete Fourier transforms (DFTs) 
are computed. 

Again, because real structures have an infinite number of 
DOFs, we can measure FRFs between as many DOF pairs 
(input output pairs) as we like, as shown in Figure 2.  Each 
FRF simply adds more definition to the dynamic model by 
adding another element to a row and column of the FRF 
matrix. 

Frequency Domain ODS 

The ODS can now be defined as a solution to Equation (5).  
The frequency domain ODS is simply defined as the forced 
response at a specific frequency ( )jω 0 , 

{ ( )} [ ( )]{ ( )}ODS j H j F jω ω ω0 0 0=   (6) 

This equation says that the ODS is made up of a summation 
of vectors, each one equal to the Fourier transform of an 
excitation force times the column of FRFs corresponding to 
the excitation DOE.  From this it is clear that the ODS is 
dependent upon applied external forces. 

Time Domain ODS 

Taking the inverse FFT ( FFT−1 ) of both sides of Equation 
(6) gives a definition of the time domain ODS, 

{ ( )} {[ ( )]{ ( )}}ODS t FFT H j F j= −1 ω ω  (7) 

This equation yields an ODS vector for each value of time 
over which the FFT−1  is computed. 

Sinusoidal Response 

The Fourier transform of a sine wave signal is nonzero at 
the frequency of the sine wave, and zero for all other fre-
quencies.  For a sine wave with an amplitude of “1”,  Equa-
tion (6) simply says that the frequency domain ODS of a 
structure for single sinusoidal excitation is the values of the 
FRFs from the reference (excitation) column, at the exci-
tation frequency ( )jω 0 , 

{ ( )} { ( )}ODS j h jrefω ω0 0=    (8) 

This is the classical definition of an ODS using FRF data. 
Similarly, Equation (7) can be used to define a time domain 
ODS for excitation by a sine wave of frequency ( )jω 0 , 

{ ( )} { ( )}ODS t FFT h jref= −1
0ω   (9) 

Since the vector of FRFs is only nonzero at a specific fre-
quency and zero elsewhere, the inverse Fourier transform of 
these FRFs is merely a vector of sine waves, which is what 
we expect for a sinusoidal ODS. 

FRF Matrix in Terms of Modes 

To further explore the relationship between mode shapes 
and ODSs, the FRF matrix can first be written in partial 
fraction form, 

[ ( )] ( )] ( )] ... ( )]modH j H j H j H jesω ω ω ω= + + +1 2 (10) 

where:  [ ( )]
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p jk k k= − +σ ω = pole of the kth mode 

σk = modal damping of the kth mode 

ωk = modal frequency of the kth mode 

[ ]R k = a matrix of constants (called residues), for 
the kth mode. 
* - denotes complex conjugate 
j - denotes the imaginary operator. 

Furthermore, each modal residue matrix can be written as 
the outer product of the mode shape vector with itself, mul-
tiplied by a scaling constant. 

[ ] { }{ }R A u uk k k k
tr=     (11) 

where: Ak = a scaling constant for the kth mode 

{ }uk = mode shape vector for the kth mode 
tr - denotes transposed vector. 

The denominators in Equation (10) are functions of fre-
quency, and cause the peaks in an FRF.  The location of 
each peak is dictated by each pole location pk .  Each peak 
in the FRF is evidence of at least one mode, or resonance.  
An FRF measurement is shown as a summation of modal 
resonance curves in Figure 6. 

 
Figure 6.  FRF as Sum of Resoance Curves. 

Measuring One Row or Column of FRFs 

Modal testing is feasible because of the special form of the 
residue matrix; that is, the outer product of the mode shape 
(the mode shape multiplied by itself transposed).  Every row 
and column of the residue matrix contains the same mode 
shape, multiplied by one of its own components.  This is a 
fundamental result, which allows us to find the mode shapes 
of a structure by measuring only one row or column of 
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FRFs from the FRF matrix.  Without this extreme simplifi-
cation, we would have to measure the entire FRF matrix 
instead of just one row or column.  Modal testing would 
indeed be too time consuming! 

Curve Fitting FRFs to Obtain Modes 

All forms of curve fitting that obtain modal parameters from 
FRF measurements use Equation (10), a simplification of it, 
or one of its equivalent forms as the analytical expression to 
be matched to the FRF data.  The unknown parameters of 
the model are the modal parameters of the structure.  The 
very simple curve fitting methods depicted in Figure 4 all 
result from simplified versions of Equation (10) [4].  More 
sophisticated multiple mode (or MDOF) curve fitting meth-
ods are also derived from Equation (10) [7]. 

ODS in Terms of Modes 

By substituting the modal form of the FRF matrix (10) into 
the forced response Equation (6), the relationship between 
modes and ODSs is established. 

• Every element of the FRF matrix is a summation of 
modal resonance curves.  Therefore, the ODS contains 
contributions from all of the modes. 

• The ODS depends not only on the excitation forces, but 
also on the locations of the poles (resonant peak fre-
quencies) and the structure's mode shapes. 

• If an excitation force puts energy into a structure near a 
resonant peak frequency, the ODS could be very large, 
depending on the value of the modal residue between 
the excitation and response DOFs. 

• The modal residue (between an excitation DOF and a 
response DOF) is the product of the two mode shape 
components for the two DOFs, as shown in Equation 
(11).  If either of these components is zero (a nodal line 
of the shape), the mode will not contribute to the ODS. 

Equation (11) says what every vibration engineer knows 
from experience; namely, if either the excitation or re-
sponse DOF is on a nodal line of a mode shape, that mode 
will not contribute to the ODS, and the mode shape cannot 
be obtained from any measured ODS. 

Using the Sinusoidal ODS as a Mode Shape 

If the structure is excited by a single sinusoidal force, its 
steady state response will also be sinusoidal, regardless of 
the frequency of excitation. We saw this as a result in Equa-
tions (8) and (9).  However, the ODS that is measured also 
depends on whether or not a resonance is excited. 

We have already seen that in order to excite a resonance, 
two conditions must be met: 

Condition 1:  The excitation force must be applied at a 
DOF which is not on a nodal line of the mode shape. 

Condition 2:  The excitation frequency must be close to the 
resonance peak frequency. 

If both of these conditions are met, and the resonance is 
"lightly" damped, it will act as a mechanical amplifier and 
greatly increase the amplitude of response, or the ODS. 
Conversely, if either condition is not met, the mode will not 
participate significantly in the ODS. 

All single frequency sine wave modal testing is based upon 
achieving the two conditions above, plus a third, 

Condition 3:  At a resonant frequency, if the ODS is domi-
nated by one mode, then the ODS will closely approximate 
the mode shape. 

Another way of saying this is that the contribution of only 
one of the terms in the summation in Equation (10) is 
much greater than all the rest.  If Condition 3 is not met, 
then two or more modes are contributing significantly to the 
ODS, and the ODS is a linear combination of their mode 
shapes. 

Difficulty with FRF Measurements 

We have already seen that modes can be determined exper-
imentally by curve fitting a set of FRF measurements.  As 
indicated by Equation (1), however, FRF measurement re-
quires that all of the excitation forces causing a response 
must be measured simultaneously with the response. 
Measuring all of the excitation forces can be difficult, if not 
impossible in many situations.  FRFs cannot be measured on 
operating machinery or equipment where internally generat-
ed forces, acoustic excitation, and other forms of excitation 
are either unmeasured or unmeasurable.  On the other hand, 
ODSs can always be measured, no matter what forces are 
causing the vibration. 

Difficulty with ODS Measurements 

In general, an ODS is defined with a magnitude and phase 
value at each point on the structure.  In other words, to de-
fine an ODS vector properly, both the magnitude and rela-
tive phase is needed at all response points.  In the frequency 
domain ODS given by Equation (6), this is explicit.  The 
linear spectrum (FFT) is complex valued, with magnitude 
and phase at each frequency. 

In the time domain ODS given by Equation (7), magnitude 
and phase are implicitly assumed.  This means that either all 
of the responses have to be measured simultaneously, or 
they have to be measured under conditions which guarantee 
their correct magnitudes and phases relative to one another. 
Simultaneous measurement of all responses means that a 
multi channel acquisition system, that can simultaneously 
sample all of the response signals, must be used.  This re-
quires lots of transducers and signal conditioning equip-
ment, which is expensive. 

Repeatable Operation 

If the structure or machine is undergoing, or can be made to 
undergo, repeatable operation, then response data can be 
acquired one channel at a time.  To be repeatable, data ac-
quisition must occur so that exactly the same time wave-
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form is obtained in the sampling window, every time one is 
acquired.  Figure 7 depicts repeatable operation.  For repeat-
able operation, the magnitude and phase of each response 
signal is unique and repeatable, so ODS data can be ac-
quired one channel at a time. 

 
Figure 7.  Repeatable Operation. 

This only requires a single channel data acquisition system, 
but an external trigger is usually required to capture the re-
peatable event in the sampling window.  Unfortunately, re-
peatable operation cannot be achieved in many test situa-
tions. 

Steady State Operation 

Steady state operation can be achievable in many situations 
where repeatable operation may not be.  Steady state, or 
stationary, operation is achieved when the auto power spec-
trum of a response signal does not change over time, or 
from measurement to measurement.  Figure 8 shows a 
steady state operation.  Notice that the time domain wave-
form can be different during each sampling window time 
interval, but its auto power spectrum does not change. 

 
Figure 8.  Steady State Operation. 

For steady state operation, ODS data can be measured with 
a 2 channel analyzer or acquisition system, that can compute 
a tri spectrum average, as shown in Figure 9.  The cross 
spectrum measurement (recall that it is the numerator of the 
FRF), contains the relative phase between two responses, 

and the auto spectrum of each response contains the correct 
magnitude of the response.  Since the 2 response signals are 
simultaneously acquired, the relative phase between them is 
always maintained.  No special triggering is required for 
steady state operation. 

ODS FRF Measurement 

Dr. Roland Angerts and others have suggested a new type of 
measurement, called ODS FRF, for obtaining ODSs from 
structures undergoing steady state operation.  It is called an 
ODS FRF since it yields ODSs with correct magnitudes and 
phases.  The real advantage of the ODS FRF measurement 
is that no excitation forces need be measured, so it can be 
used in situations where the input forces cannot be meas-
ured. 

This new type of measurement is the result of a new meas-
urement process, where one response signal is used as a 
reference, and the tri spectrum averages are treated differ-
ently than for the standard FRF: 

1. Cross spectrum measurements are made, between each 
response and a reference response. 

2. Each ODS FRF is formed by replacing the magnitude 
of each cross spectrum with the auto spectrum of the re-
sponse. 

 
Figure 9.  Tri spectrum Averaging to Compute ODS FRF 

This new measurement contains the correct magnitude of 
the response at each point, and the correct phase relative to 
the reference response.  Evaluating a set of ODS FRF meas-
urements at any frequency yields the frequency domain 
ODS for that frequency.  Figure 10 shows an interactive 
display of ODSs from a set of ODS FRF measurements. 
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Figure 10.  Animation of ODS FRF Data. 

Summary 

To summarize, we have seen that mode shapes are defined 
quite differently from ODSs.  Yet, the relationship between 
the two is used to obtain modes from ODS measurements. 

• Modes are used to characterize resonant vibration in 
machinery and structures.  An ODS is merely the forced 
response, either at a specific frequency or a specific 
moment in time. 

• Modes are inherent properties of resonant structures.  
ODSs can be defined for any structure, resonant or not. 

• An ODS changes with structural loading, a mode shape 
does not.  The ODS is completely arbitrary, depending 
on the combination of excitation forces acting on the 
structure.  Modes only change with changes in the 
physical properties (mass, stiffness, or damping) or 
boundary conditions of the structure. 

• An ODS can answer the question, "How much is the 
structure actually moving?".  A mode shape has no 
units, so it cannot be used by itself to answer this ques-
tion. 

• Modes are solutions to linear, stationary differential 
equations of motion.  Therefore, they can only be 
measured when a structure is undergoing linear, station-
ary motion.  ODSs are defined for any type of motion, 
including nonlinear and time varying motion. 

• Modes define resonances, which can be characterized 
as energy trapped within the boundaries of a structure.  
In order for a resonant standing wave motion to occur, 
energy must travel freely within the boundaries of the 
structure, and not readily escape.  An ODS can be de-
fined for non resonating structures that don't satisfy 
these conditions. 

• All modal testing is done by measuring an ODS, and 
then applying special interpretation (e.g. for sine testing 
the ODS is the mode shape), or special post processing 
(curve fitting) to obtain modal parameters. 

ODSs always contain contributions due to resonances and 
excitation forces.  We saw from looking at the analytical 
form of the FRF matrix model written in terms of modal 
parameters, that when the modes are not heavily coupled 
together (typical for lightly damped structures), the ODS at 
or near a resonant frequency is dominated by a single 
mode shape.  This fact is the underlying assumption behind 
all normal mode testing, and is also used when single mode 
(SDOF) curve fitting methods are used to obtain modal pa-
rameters from FRFs. 

Modes can be obtained by curve fitting FRFs, but measure-
ment of FRFs requires that all excitation forces be meas-
ured, which is not always possible.  ODS measurements can 
be made without measuring forces, but further assumptions 
are also required.  The ODS FRF measurement is ideal for 
analyzing the ODSs of operating machinery.  From ODS 
FRF measurements, the question "How much is the machine 
or structure really moving?" can be answered. 
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