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ABSTRACT 
 
A technique for identifying the modal properties of an elastic 
structure in a testing laboratory is presented. The technique is 
based upon the use of digital processing and the fast Fourier 
transform (FFT) to obtain transfer function data, and then the 
use of a least squared error estimator to identify modal proper-
ties from the transfer function data. Both analytical and exper-
imental results are presented. 
  
INTRODUCTION 
 
In recent years the implementation of the fast Fourier trans-
form (FFT) in low cost mini-computer systems has provided 
the environmental testing laboratory with a faster and more 
powerful tool for acquisition and analysis of vibration data 
from mechanical structures. The results are used by analysts 
and designers alike as an aid to better understanding and im-
proving mechanical designs. 
 
In this paper an analytical technique is presented which as 
been implemented in a Fourier Analyzer to provide modal data 
on site in a testing laboratory. The technique is based upon the 
application of a least squares estimator to measured transfer 
function data. During the process the natural frequencies, 
damping factors, and mode shapes of all the predominant 
modes of vibration of a structure are identified. 
  
A brief review of the modal theory and a derivation of the 
analytical form used in the estimation process are given in the 
following section.  Following that is a discussion of how pa-
rameters are obtained from a single transfer function, and 
some experimental results are given. Lastly the global nature 
of a mode is discussed and verified with experimental results.  
  
MODAL THEORY 
 
Assume that an elastic system has n-degrees of freedom and 
that its motion can be adequately described by n-linear differ-
ential equations with constant coefficients, written as  
 

)()()()(
2

2

tftKx
dt

tdxC
dt

txdM =++    (1)  

 
where )(tx  and )(tf  are displacement and force n-vectors 
respectively, and M, C, and K are real symmetric matrices. M 

is called the mass matrix, C the damping matrix, and K the 
stiffness matrix. 
 
Taking the Laplace transform of equation (1) gives  
 

KCsMssBsFsXsB ++== 2)(),()()(   (2) 
 
where )()( txsX ↔  and )()( tfsF ↔  are vector La-
place transform pairs.  B is defined as the (n x n) system ma-
trix.  Eq. (2) is often referred to as an expression of the dy-
namic flexibility of the structure. 
 
Eigenvectors ( ky ) and eigenvalues ( kλ ) of the matrix can be 
defined in the usual way, i.e. to satisfy the equation 
 

kkk yyB λ=  nkl ≤≤    (3) 
 
where ky  is an n-vector and kλ  is a constant. The system 
matrix B has (n) eigenvalues and (n) eigenvectors; each eigen-
value-vector pair is defined by equation (3). 
 
It is straightforward to show that the ky  eigenvectors are or-

thogonal, provided all values kλ  are different, as follows: 
 
For two different eigenvalues (k) and (j) 
 

kkk yyB λ=   (4) 
 
and 
 

jjj yyB λ=   (5) 
 

Note that equation (5) can be rewritten as  
 

( ) t
jj

t
j

t
j

t
j

t
j yByByyB λ===    (6) 

 
since B is symmetric. (The superscript t denotes the transpose 
operation.)  Pre-multiplying equation (4) by jy  and post mul-

tiplying equation (6) by ky  gives 
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so 
  

( ) 0=− k
t
jjk yyλλ     (8) 

 
Thus for 0, =≠ k

t
jjk yyλλ  which defines orthogonality 

between two eigenvectors.   
  
As usual, the eigenvalues kλ can be expressed as roots of the 
determinant   
 

0=− IB kλ     (9) 
  
where I  is an (n x n) identity matrix, and each value kλ  can 
be found by solving the polynomial equation defined by (9).   
 
We define a transformation matrix Φ  as  
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where the n columns of Φ  are the eigenvectors ky .  We also 

define a diagonal matrix λ  of eigenvalues as   
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Then, the above definition of eigenvalues and eigenvectors 
can be expressed in matrix form as   
  

λΦ=ΦB    (12) 
   
By defining the generalized inverse of Φ  as   
  

( ) tt ΦΦΦ=Φ
−− 11    (13) 

  
Equation (12) can be rewritten as   
  

1−ΦΦ= λB      

Since the eigenvectors are orthogonal, if follows that ΦΦ t  is 
(n x n) diagonal with elements 2

ky .  Thus, λΦΦ=ΦΦ tt B  
is diagonal.   
  

If the eigenvectors are normalized to unit magnitude, so that 
It =ΦΦ , then λ=ΦΦ Bt . In any case, λΦΦ t  is an (n 

x n) diagonal form of B. The general form BDDt  is called a 
congruence transformation, and if the columns of D are or-
thogonal (so that DDt  is diagonal), it is called an orthogonal 
transformation. Thus, λΦΦ=ΦΦ tt B  represents an or-
thogonal diagonalization of B.  If the eigenvalues of B are 
unique, then the eigenvectors are also unique except for an 
arbitrary normalization constant, so this orthogonal diagonali-
zation of B must be unique to the same extent.   
 
The transfer function matrix H of this linear system (1) is de-
fined as   

 
111 −−− ΦΦ== λBH    (15) 

 
assuming that the indicated matrix inverses exist. 
 
We can also write 
 

1−ΦΦ=ΦΦ λtt H ,   (n x n) diagonal   (16) 
  
Thus, 1−ΦΦ λt  is the orthogonal diagonalization of H, 
which is unique except for normalization constants.  Note that 
both B and H are diagonalized by the same orthogonal trans-
formation. 
 
Recall that the elements of B are quadratic functions of s. Both 
the eigenvalues kλ  and the eigenvector components ky  are 
generally rather complicated (usually irrational) functions of s. 
This means that the eigenvector components in the time do-
main are each changing in some complicated way with respect 
to one another, and that each corresponding eigenfunction 
(time domain representation of 1−ΦΦ λt ) is a complicated 
time waveform. The only real advantage to this formulation is 
that each eigenvector distribution is orthogonal with respect to 
all other eigenvectors. 
 
It is preferable to decompose B or H into a set of time invari-
ant vectors (independent of s), and put all s dependence into 
some diagonal representation of the system or transfer matrix. 
Practical experience indicates that this possibility exists, i.e. 
physical structures exhibit "standing wave" vibration patterns 
at certain frequencies in which a "global" vibration mode 
shape is associated with each "resonant" frequency. We are 
further encouraged by the fact that the solution of the homo-
geneous wave equation can be expressed as the product of a 
time function and a space function.  Finally the driving func-
tion can be decomposed into a linear combination of these 
homogeneous solutions, and the complete solution obtained in 
terms of linear combinations of these homogeneous "eigen-
functions".  It should be apparent that the key to this desired 
decomposition of B lies in the solution to the homogeneous 
equation 
Bu = 0. 
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It is now shown how this homogeneous equation can be 
solved in terms of the previously defined eigenvalues and ei-
genvectors of B. We begin by recognizing that each element 
of 1−= BH  is a rational fraction in s, with denominator giv-
en by det|B|. Thus, the roots of this denominator, called the 
poles of H, are the values of kss =  for which det|B| = 0.  
These values of s also satisfy the above homogeneous equa-
tion Bu = 0. 
 
Each element of H can be expanded into a partial fraction ex-
pansion about each pole so that H can be written in the follow-
ing form: 
 

∑
= −

=
n

k k

k

ss
a

H
2

1
    (17) 

  
where the s'ka  are matrices independent of s. Recall the rep-
resentation of H in terms of eigenvalues and orthogonal eigen-
vectors. 
 

11 −− ΦΦ= λH    (18) 
 
Each ka  matrix can be found by multiplying H times kss − , 

and then setting kss = , provided all ks  values are different.  
Thus, 
 

( )[ ]
kkk ssssa =Φ−Φ= −− 11λ   (19) 

   
Recognize that there are 2n poles because each element of B is 
of quadratic form. Further, the poles generally appear in com-
plex conjugate pairs, because the elements of M, C, and K are 
real numbers, and hence each quadratic element of B has real 
coefficients. If poles do not appear in conjugate pairs, then 
they must be real.  
 
Now, 1−λ  is a diagonal matrix whose elements are functions 
of s.  Furthermore, 
  

[ ] [ ] ∏
=

==
n

k
kB

1

detdet λλ    (20) 

 
because λ  is similar to B ( ΦΦ= − B1λ ), and hence has 

the same eigenvalues.  Thus, any value of kss =  which satis-

fies det [B] = 0, will also force one of the s'λ , say kλ , to 
zero. Rewriting the eigenvector definition   
 

kkk yyB λ=     (21) 
   

it is clear that 0=kuB  implies that kss = , 0=kλ and 

( )kkk syu =       (22)  
 
Conjugating this homogeneous equation gives 0=∗∗

kuB , for 

which ∗= kss , and 0=kλ  as before.  
Also 

 ( )∗∗ = kk syu    (23)  
  
Thus, 0=kλ for either kss =  or ∗= kss , and the homoge-

neous solution at kss =  is the original eigenvector evaluated 

at kss = . Also, the solution corresponding to the conjugate 

poles ∗= kss  is simply ( ) ( )kkkkk sysyu ∗∗∗ ==  which is 

the conjugate of the solution for kss = . 
   
Now in the evaluation of ka , we form the diagonal matrix 

( )
k

k ssss =− −1λ .  However, since kλ  contains a factor 

kss − , then ( )
k

kk ssss =− −1λ  will have some well de-

fined values, while all other terms of the λ  matrix (which do 
not contain kss −  because the kλ  values are unique) will go 

to zero. Hence, there is only one non-zero element in the λ  

matrix, whose value is 
( )

k
k

k

ss

ss

=

−
λ

.  As a consequence of 

this, the expression for ka  involves only the thk  column of 

Φ  (which is ( )kkk syu = ), and the thk  row of 1−Φ  

(which must be k
t
k

t
k uuu , since I=ΦΦ−1 ). Thus, 
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  (24) 

Note that t
kk uu  is an (n x n) symmetric (complex) matrix 

while k
t
k uu  is a complex scalar. 

 
Therefore, the ka  matrix is determined by a mode shape vec-

tor ku , which is simply the solution to the homogeneous sys-

tem equation 0=kuB  for kss = . Furthermore, each col-
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umn of ka  is this same mode shape vector (within a constant 
multiplier), and each row is the transpose of the vector.  From 
a measurement standpoint this implies that the same mode 
shape is obtained regardless of which spatial point is excited 
or monitored. This pervasiveness of the mode shapes through-
out the transfer matrix is verified with experimental results 
later in the paper. 
 
Returning to the partial fraction expansion of H, 
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We can represent this summation of partial fraction terms in 
matrix form by defining the following matrices: 
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so, 
 

tH ΘΛΘ= −1 ,   (n x n) symmetric  (28) 
 
Φ  is called the modal transformation matrix, and 1−ΦΛΦ t  
is the transfer matrix in modal coordinates. Note that the col-
umns of Θ  are not orthogonal (even though the parent eigen-
vectors ky  are orthogonal) because each ku  is evaluated at a 

different value of s. However, the elements of Θ  are not 
functions of s. All of the s dependence is contained in Λ . 
Each column of Θ  represents a normalized mode shape vec-
tor for the corresponding pole of H. It should be apparent that 
this normalization is arbitrary, and could be absorbed into the 
Λ  matrix if desired. 

 
As discussed previously, the poles of H usually occur in con-
jugate pairs, and for this case the mode shape vectors associat-
ed with the negative poles (lower half of s-plane) are simply 
the conjugates of the vectors associated with the positive 
poles. Thus, if 1Θ , is defined as that (n x n) part of Θ  asso-

ciated with positive poles, then ∗Θ1  will correspond to the 
negative poles. Similarly, Λ  can be broken into two parts, 

1Λ  comprising the positive poles, and 2Λ  comprising the 
negative poles. H can then be represented  
  

( )ttH ∗−∗− ΘΛΘ+ΘΛΘ= 1
1

211
1

11   (29) 
     
or in partitioned form as   
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Each of these sub-matrices is (n x n) and only 1Λ  and 2Λ  
are functions of s. 
  
Define   
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It is easy to show that   
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so,  
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and H can be written, 
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We define the modal mass as the coefficient of 2s  in the de-
nominator of each element of H. However, we recognize that 
this coefficient is arbitrary, depending on the numerator nor-
malization. Notice that kA  has the dimensions of 

( ) 1mass*s − , so the numerator should be normalized by di-

viding by something of the form kk sA . We can use the rather 

arbitrary normalization factor ( )kkkk sAsA ∗∗ +− , so  
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This implies that 
k

k
k m

k
s = , which is the resonant frequency. 

 
Notice that each element of the H matrix has a different zero 
in the s-plane, depending upon the angle of kA  and ku  at 
each point, but the poles of each element of H are common, 
and occur at kss =  and ∗= kss . 
 
For the special case of zero damping ( 0=kc ), called the 

normal mode case, we find that ∗−= kk ss  is purely imagi-
nary. Thus, the B matrix becomes real symmetric, and it's ei-
genvalues and eigenvector components become real. This 
means that ∗= kk uu , and we can show that kA  becomes 

purely imaginary, so ∗−= kk AA . In this case, the numerator 
zero in each element of H goes to infinity, and H becomes  
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Thus it has been shown that two transfer function forms of 
interest in modal analysis, namely the complex eigenvalue-
eigenvector case (eq. 34) and the normal mode case (eq. 35) 
can be obtained from a more general eigenvalue-eigenvector 
diagonalization of the system or transfer matrix. In the next 
section the identification of modal parameters from measured 
transfer function data using eq. 34 is discussed. 
 
IDENTIFICATION OF MODAL PARAMETERS 
 
The technique used to obtain the results presented here in-
volves the curve fitting of analytical expression (34) to a set of 
measured transfer function data. The curve fitting is performed 
in a manner which minimizes the squared difference between 
the complex data and the complex valued analytical function 
form, i.e. a least squared error estimate of the data is deter-
mined  
 
Recall that according to the modal theory, only one row or one 
column of the transfer matrix need be measured since all other 
rows and columns contain redundant information. During the 
process of determining the least squared estimator for the 
transfer matrix, complex values of ks  and the residues of one 
column or one row of the transfer matrix H for all predomi-
nant modes of vibration are determined. 
 
For example, the thq  column of H would have the residues  
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After measuring these n residues of H, we form the sum of the 
squares of these numbers giving  
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Taking the square root, and normalizing the measured residues 

by this quantity gives k
t
kpk uuu , which are the elements 

of the normalized mode shape vector. The kA  coefficients are 

readily found from any residue of qpH  by dividing by the 

product of the thp  and thq  components of the normalized 
mode shape vector. The modal system parameters (mass, stiff-
ness, damping) are obtained from kA  and ks , and the mode 

shape is given by the ku  vectors (generally normalized by 

k
t
k uu ). 

 
The pole location of mode (k) in the s-plane, also called the 
complex frequency, can be written in terms of the coordinates  
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Where 
 

2

2 







−==

k

k

k

k
k

k

k
k m

c
m
k

m
c

ωσ       (39) 

 

kσ  is called the damping factor and kω  the natural fre-
quency of mode (k). Other related and commonly used terms 
are the damping ratio and resonant frequency  
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k
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These terms are shown in the s-plane in Figure 1. 

 
Figure 1. Poles of a Mode 

 
 
The experimental data was taken from the metal T plate 
mounted on a foam rubber base shown in Figure 2. 
 

 
Figure 2. Test Specimen 

 
A hammer was used to provide the broadband excitation force, 
with a load cell attached to it to measure the force. An accel-
erometer mounted on the plate was used to measure responses. 
 
The transfer function data was obtained using a Hewlett-
Packard 5451B Fourier Analyzer, and the modal parameter 
identification was performed using the Hewlett Packard Modal 
Analysis Package. 
 
Transfer functions were measured between 22 different points 
evenly spaced along the outer periphery of the T-plate. Figure 
3 shows a typical transfer function in rectangular or co-quad 
form. 

 
Figure 3. Transfer Function Data 

  
Figure 4 shows the least squares estimate of this transfer func-
tion and Table 1 contains its corresponding modal parameters. 
These results were generated on the Fourier Analyzer using 
the Modal Package in about 30 seconds.   
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TABLE 1. MODAL PARAMETERS FROM A SINGLE 
TRANSFER FUNCTION 

 
Residue 

 
Mode 

 
ω  (Hz) 

 Sec
Radσ  

 
Magnitude 

Phase 
Angle 

(Degrees) 
 

1 305.63 10.63 1.025 166 
2 465.50 7.08 0.044 5 
3 782.84 29.46 3.135 179 
4 842.28 35.95 2.899 358 
5 968.96 14.44 0.244 171 
6 1156.40 30.84 3.436 0 
7 1517.36 11.16 0.246 353 
8 2190.07 50.52 7.118 360 
9 2349.29 39.04 1.924 3 

10 2511.58 22.79 0.405 170 
11 2989.90 24.39 0.198 163 
12 3061.80 24.77 0.803 359 
13 3287.23 81.45 1.372 170 

 
MODE AS A GLOBAL PROPERTY  
 
By far the most fundamental assumption of modal testing is 
that a mode of vibration can be excited from anywhere on an 
elastic structure, except of course along its node lines where it 
can't be excited at all. This is another way of stating the result 
derived earlier, i.e. that the same mode shape vector (scaled by 
a different component of itself) is contained in every row and 
column of the transfer matrix. In addition, modal frequency 
and damping are constants which can be identified in any ele-
ment of the transfer matrix, i.e. any transfer function taken 
from the structure. 

 
Figure 4. Analytical Transfer Function 

 
It is important to recognize that this global mode shape con-
cept implies some sort of spatial boundaries, beyond which 
vibrations will not readily propagate. Any attempt to extend B 
or H beyond these boundaries will result in singular matrices, 

and a breakdown of the modal concept. This behavior implies 
that B and H must be partitioned into sub-matrices some of 
which will be nonsingular, and will possess well-defined vi-
bration modes. If two linear systems are completely isolated, 
then a single composite mode including both systems is not 
meaningful. Conversely, it is important to include enough spa-
tial points to describe all of the vibration modes of interest. If 
some region of a bounded system is not monitored or excited, 
or if points are not chosen sufficiently close together, then 
some modes cannot be adequately represented. 
 
Following are the results of two separate modal tests that were 
performed on the T-plate. In Test #1 the accelerometer was 
mounted on the bottom plate as shown in Figure 2 and the 
plate was impacted with the hammer at the 22 peripheral loca-
tions. Using the Fourier Analyzer, a transfer function was 
measured between each of the 22 impact points and the single 
response point (accelerometer location). Since the transfer 
function is the same between two points regardless of which 
one is the excitation or response point, this test is equivalent to 
impacting the plate in one spot and moving the accelerometer 
to all 22 positions. This reciprocity or symmetry assumption is 
also fundamental to modal analysis and is reflected in the 
symmetry of the system and transfer matrices. 
 
Test #2 was the same as Test #1 except that the accelerometer 
was mounted at position #2. 
 
Table 2 contains the least squared estimates of the natural fre-
quency and damping factor of a single mode from the 22 
transfer function measurements. These are remarkably good 
when one considers that the resolution between spectral lines 
is 10 Hz. Working in a narrower bandwidth or using more data 
points to describe each transfer function should give better 
results.  Figure 5 is an isometric view of the mode shape in a 
displaced position. 
 

 
Figure 5. Mode Shape of 305.6 Hz Mode 

TABLE 2. MODAL FREQUENCY AND DAMPING 
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Test # 1 Test # 2 
Meas. 
No. 

Freq 
(Hz) 

Damping 
(rad/sec) 

Freq 
(Hz) 

Damping 
(rad/sec) 

1 306.10 12.09 306.07 11.44 
2 305.72 11.12 305.99 10.57 
3 305.72 11.22 305.85 10.44 
4 305.63 10.62 305.83 10.61 
5 305.57 11.09 306.00   9.98 
6 305.63 11.06 305.81 10.34 
7 305.62 11.05 306.00 10.46 
8 305.84 10.81 306.48 11.09 
9 305.69   9.75 306.33 11.12 

10 305.65 10.00 306.24 10.88 
11 305.68   9.93 306.31 10.73 
12 305.61 10.11 306.33 10.59 
13 305.64   9.84 306.35 10.48 
14 305.56   9.85 306.43 10.59 
15 305.80 10.54 306.58   9.45 
16 305.77 11.83 306.52 11.89 
17 305.73 11.03 306.32 11.39 
18 305.72 10.89 305.82 10.64 
19 305.63 10.71 305.76   9.46 
20 305.34 10.02 306.02   9.98 
21 305.55   9.76 306.12   8.40 
22 305.33 10.09 306.52 10.80 

 
Table 3 contains the corresponding normalized mode shape 
vectors from the two tests. 
 
CONCLUSIONS 
 
The results indicate that by applying an analytical transfer 
function expression through least squares estimation to meas-
ured data from linearly behaving (small displacements) struc-
tures, modal parameters consistent with the theory can be ob-
tained. The vibrations specialist must be continually aware 
however of the important assumptions necessary for obtaining 
valid modal results from test specimens. 
 

TABLE 3.  NORMALIZED MODE SHAPES 
 

Test # 1 Test # 2 
Position Mag. Phase Mag. Phase 

1 .050 167 .068 167 
2 .160 165 .146 167 
3 .272 165 .272 166 
4 .289 165 .278 166 
5 .276 166 .295 164 
6 .289 165 .282 163 
7 .148 166 .155 165 
8 .045 168 .052 170 
9 .148 345 .169 348 

10 .271 345 .299 347 
11 .286 345 .279 347 
12 .265 345 .307 348 
13 .268 345 .286 350 
14 .137 346 .162 350 
15 .078 345 .077 344 
16 .062 166 .058 171 
17 .268 164 .262 166 
18 .277 165 .230 166 
19 .265 165 .207 164 
20 .233 162 .219 164 
21 .055 162 .045 157 
22 .078 345 .082 353 
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