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ABSTRACT 
 
Modal testing has traditionally been used to confirm the 
validity of finite element models of structures. This is 
normally done by identifying the modal properties of a 
structure from test data, and then comparing them with the 
modal properties of the finite element model. 
 
In this paper an alternative approach of directly comparing the 
mass, stiffness, and damping matrices of the dynamic model is 
explored. A new algorithm which estimates the mass, 
stiffness, and damping matrices of a structure from Frequency 
Response Function (FRF) measurements is also presented. 
These matrix estimates are compared to the matrices of an 
analytical model of the same structure, and the differences are 
noted. 
 
Clearly, if the dynamics of the structure are represented by 
FRF measurements, and some significant part of the 
measurement data is left out of the estimation process, the 
matrix estimates will be deficient. The effect upon the 
accuracy of the matrix estimates is illustrated by examples, for 
cases when an inadequate frequency range of FRF data is 
used, and when a reduced number of degrees-of-freedom 
(DOFs) is used. 
 
NOMENCLATURE 
 
n = number of DOFs of the model 
m = number of modes 
r = number of reference points of the FRF measurements 
t = time variable 
s = Laplace variable 
 
[ ]M = mass matrix     ( )nn×  

[ ]C = damping matrix    ( )nn×  

[ ]K = stiffness matrix    ( )nn×  
 
{ })(tx = vector of displacements  ( )1×n  

{ })(tx′ = vector of velocities  ( )1×n  

{ })(tx ′′ = vector of accelerations  ( )1×n  

{ })(tf = vector of externally applied forces  ( )1×n  

{ })(sX = vector of Laplace transforms of    

  displacements  ( )1×n   

{ }ICs = vector of initial condition terms  ( )1×n  
 
 
[ ])(sB = system matrix ( )nn×  

[ ])(sH = transfer matrix = [ ] 1)( −sB  ( )nn×  
 
 
[ ])(tH = r columns of the matrix of impulse  

  responses ( )rn×    

[ ]L = matrix of modal participation factor ( )rn×  

[ ]U = matrix of mode shapes ( )mn×  
 

kp = pole location for the thk  mode = kk jωσ +−  

kσ = damping of the thk  mode 

kω = damped natural frequency of the thk  mode, k = 1,…,m 
 
INTRODUCTION 
 
During the past ten years, the majority of the research activity 
on the testing of structures has centered around the 
development of new methods for identifying the modal 
properties of structures. While the modes of vibration are a 
good means for comparing experimental and analytical (finite 
element model) results, many times it would be more useful to 
obtain the mass, damping, and stiffness properties of the 
structure directly from measured data. 
 
In cases such as automatic control system design, accurate 
estimates of the mass, stiffness, and damping properties for 
only a few DOFs may be all that is required in order to build 
an effective controller. 
 
The method presented here is the outgrowth of our recent 
experiences with a new multiple reference algorithm for 
identifying modal parameters. This algorithm was first 
described in [2]. From examination of the curve fitting 
equations, (shown later), it is clear that the curve fitting 
operation itself actually yields two matrices which are then 
used to form an eigenvalue problem, which is then solved to 
find the modal properties of the structure. In this paper, 
however, it is shown how these intermediate matrix solutions 

Page 1 of 7 



IMAC V April 6, 1987 
 
can be used to recover the mass, damping, and stiffness 
properties instead of the modal properties. 
 
In a previous paper [4], it was shown how the mass, stiffness, 
and damping matrices can be recovered from the modal 
properties of a structure. This approach turned out to be very 
sensitive to errors in the modal properties themselves, and also 
gave poor results if an inadequate number of modes was used. 
The approach taken here avoids the use of modes altogether, 
and hence avoids these causes of error. 
 
In his recent thesis [1] on this subject, J. Leuridan named this 
approach to parameter identification the "Direct Parameter 
Identification" method. He has categorized a variety of time- 
domain and frequency-domain approaches for solving this 
problem. His primary concern, however, was with the ident-
ification of the modal properties of a structure. 
 
BACKGROUND 
 
Most analyses of the dynamics of structures are based upon 
the use of a set of linear second-order differential equations. 
For a structural model with n degrees-of-freedom, the 
equations can be written in the following form: 
  
[ ]{ } [ ]{ } [ ]{ } { })()()()( tftxKtxCtxM =+′+′′      

( )1×n  (1) 
 
These equations are a statement of Newton's Second law 
involving all of the DOFs which are chosen for the model. The 
coefficient matrices, [ ] [ ] [ ]( )KCM &,, , contain constants 
which represent the mass, damping, and stiffness properties of 
the structure, at least for the DOFs which are included in the 
model. 
 
Since the equations of motion are linear, we can transform 
them into the Laplace domain without losing any information: 
 

[ ]{ } [ ]{ } [ ]{ } { } { }ICssFsXKsXCssXMs +=++ )()()()(2  
 

( )1×n  (2) 
 
All of the physical properties of the structure are preserved on 
the left-hand side of the equations, while all of the applied 
forces and initial conditions (ICs) appear on the right-hand 
side. The initial conditions can be treated as a special form of 
the applied forces, and hence can be dropped from 
consideration in the following development without loss of 
generality. 
 
To focus our attention on the physical properties, namely, the 
mass, damping, and stiffness properties, the equations can be 
written: 
 

[ ]{ } { })()()( sFsXsB =   ( )1×n  (3) 
where: 

 
[ ] [ ] [ ] [ ]KCsMssB ++= 2)(  ( )nn×  (4) 

 
[ ])(sB  is called the System Matrix. 
 
Alternatively, the transformed equations of motion can be 
written: 
 

{ } [ ]{ })()()( sFsHsX =   ( )1×n  (5) 
 
where [ ])(sH  is called the Transfer Matrix, or the matrix of 
transfer functions. 
 
Clearly, the System Matrix and the Transfer Matrix are 
inverses of one another. That is, they satisfy the equation: 
 

[ ][ ] [ ]IsHsB =)()(   ( )nn×  (6) 
 
where [ ]I  is the identity matrix. 
 
The above equation is true for all values of the s-variable, and 
in particular for its values along the frequency axis ( ωj -axis) 
in the s-plane. Hence, for all values of frequency, the 
following is true: 
 

 [ ][ ] [ ]IjHjB =)()( ωω  ( )nn×  (7) 
 
The matrix [ ])( ωjH  is called the Frequency Response 
Function Matrix, or simply the FRF Matrix. This relationship 
is particularly useful since it involves only the mass, damping, 
and stiffness matrices, and FRFs, which can be measured on a 
structure with any modern-day multi-channel FFT analyzer. 
 
 
CURVE FITTING METHOD 
 
This curve fitting method is the outgrowth of some recent 
research at the University of Cincinnati, the results of which 
were presented in a recent IMAC paper [2]. The original 
implementation of the method did not explicitly include the 
conjugate (negative frequency) poles associated with each 
mode. The equations shown here, which do include the  
negative frequency poles, have yielded more consistent 
answers than those which so not include these extra terms. 
 
The inverse Laplace transform of the Transfer Matrix is a 
matrix of Impulse Response Functions, which we will denote 
by [ ])(tH . For the cases of multiple input locations, [ ])(tH  
becomes a rectangular matrix, with the number of columns 
equal to the number of input references. Hence, if a set of 
measurements is made on a structure with n DOFs and r 
references, then [ ])(tH  is an ( )rn×  matrix. 
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Writing out this matrix in terms of modal parameters yields: 
 

 [ ] [ ][ ][ ] [ ][ ][ ]∗∗∗+= LeULeUtH tppt)(     ( )rn×  (8) 
 

where [ ]U  is an ( )mn×  matrix of complex mode shapes 

(m= the number of modes). [ ]pte  is an ( )mm×  diagonal 
matrix, with each "p" in the diagonal elements corresponding 
to a mode's complex pole location (frequency and damping 
values). [ ]L  is an ( )rm×  matrix of complex modal 
participation factors. These factors can be shown to be 
proportional to the mode shape values at the references. 
 
Taking the time derivation of equation (8) yields: 
 

[ ] [ ] [ ][ ] [ ][ ][ ]∗∗∗∗+=′ LepULpeUtH tppt)(   ( )rn×  (9) 
 
At time t=0, the initial displacement impulse response and its 
time derivative can then be written: 
 

[ ] [ ][ ] [ ][ ]∗∗+== LULUtH )0(    ( )rn×  (10) 
 

[ ] [ ][ ][ ] [ ][ ][ ]∗∗∗+== LpULpUtH )0(    ( )rn×  (11) 
 
Now, returning to the Laplace domain, the Transfer Matrix 
can also be written in terms of modal parameters: 
 

[ ] [ ][ ] [ ][ ])()()( sTUsTUsH ∗∗+=  ( )rn×  (12) 
 

where: 
 

[ ] [ ] [ ]LpssT 1)( −−=   ( )rn×  (13) 
 
The matrix [ ]ps −  is an ( )mm×  diagonal matrix, each term 
containing the pole location of a mode. Using equations (10), 
(11), and (12) above, we can now write the following 
identities: 
 
[ ] [ ] [ ][ ][ ] [ ][ ][ ])()()0()( sTpUsTpUtHsHs ∗∗∗+==−  

 
( )rn×  (14) 

 
[ ] [ ] [ ]

[ ][ ][ ] [ ][ ][ ])()(

)0()0()(
22

2

sTpUsTpU

tHtHssHs
∗∗∗+

==′−=−
        ( )rn×   (15) 

 
Returning, for a moment, to the equations of motion (2), the 
modal properties are actually solutions to the homogeneous 
equations: 
 

[ ][ ] [ ][ ][ ] [ ][ ] [ ]001
2 =++ UApUApU  ( )nn×  (16) 

 

where: 
 

[ ] [ ] [ ]KMA 1
0

−=   ( )nn×  (17)  
 

 [ ] [ ] [ ]CMA 1
1

−=   ( )nn×  (18) 
 
The conjugate modal parameters ( [ ]∗U , and [ ]∗p ) are also 
solutions to the homogeneous equations. This can be written 
in a manner similar to equation (16). 
 
Finally, we can pre-multiply equations (12), (14), and (15) by 
the matrices [ ]0A , [ ]1A , and [ ]I , and write the result as: 
 

 
[ ][ ] [ ] [ ][ ] [ ]
[ ] [ ][ ] [ ] [ ] [ ]0)0()0()(

)0()()(

2

10

==′−=−

+=−+

tHtHssHsI

tHsHsAsHA
    ( )rn×  (19) 

 
Or, the above equation can be rewritten as: 

 
[ ][ ] [ ] [ ][ ] [ ] [ ] [ ])()()( 2

1010 sHsBsBsHsAsHA −=+++     (20) 
 
where: 
 

[ ] [ ][ ] [ ]
[ ] [ ])0(

)0()0(

1

10

=−=
=′−==

tHB
tHtHAB

  ( )rn×  (21) 

 
Equation (20) is the curve fitting equation, and is valid for 
all values of the s-variable, in particular, those along the 
frequency axis ( )ωjs = . This equation is set up using 

measured FRF data [ ]( ))( ωjH , and solved for the unknown 

real-valued matrices, [ ]0A , [ ]1A , [ ]0B , and [ ]1B . 
 
Typically, a least squared error solution to equation (20) is 
found, by solving a slightly different set of linear equations, 
which allow any amount of FRF data to be used. 
 
RECOVERING THE MASS, STIFFNESS, AND 
DAMPING MATRICES 
 
The matrices [ ]0A  and [ ]1A  are estimated directly from the 
measured FRF data. Once these are known, the modal 
parameters [ ]U  and [ ]p  can be found by solving equation 

(16), as first described in [2]. Alternatively, the matrices [ ]0A  

and [ ]1A  can be used, together with some additional 
assumptions, to recover the mass, stiffness, and damping 
matrices. 
 
In general, there are more unknown elements in the mass, 
stiffness, and damping matrices than there are knowns in the 
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[ ]0A  and [ ]1A  matrices. To solve the problem, three 
additional assumptions will be made: 
 

1) the stiffness matrix is symmetric 
 

2) the mass matrix can be approximated by a diagonal 
matrix 

 
3) the total mass of the structure is known 

 
Using the second assumption, each element in the thi  row and 

thj  column of the [ ]0A  matrix can be written as: 
 
 njimka iijij ,...,2,1, ==   (22) 
 
where: 
 

ijk  = the element in the thi  row and thj  column of the 
unknown stiffness matrix, and 

 

im  = the thi  element of the diagonal mass matrix 
 
But, since [ ]K , is assumed to be symmetric, 
 
 njimmaa ijjiij ,...,2,1, ==   (23) 
 
It is clear that equation (23) can be written ( )1−n  times, 
yielding relative values for all of the diagonal mass matrix 
elements. If the total mass of the structure is known, all of the 
mass matrix elements can be determined by using the one 
additional equation: 
 

Mmi =∑     (24) 
 
where M is the total mass. 
 
After the mass matrix elements are calculated, the stiffness 
matrix can be calculated using equation (17). Similarly, the 
damping matrix can be recovered using equation (18). 
 
A FIVE DEGREE-OF-FREEDOM EXAMPLE 
 
In order to demonstrate the feasibility of this method for 
estimating mass, stiffness, and damping parameters, we will 
begin with a simple five degree-of-freedom model, as shown 
in Figure 1. The five DOFs are five discrete masses, with mass 
values of 0.4, 0.8, 1.2, 1.6, and 2.0. These five point masses 
are connected in series by springs (with constants of 36,000), 
and dashpots (with constants of 12.0). The fifth mass is also 
connected to ground. 
 
The mass, stiffness, and damping matrices for the five degree-
of-freedom structure are shown in Table 1. The modal  

 
 
 
 

 
Table 1. Mass, Stiffness, and Damping Matrices of the Five 

DOF Model 
 

[ ]0.26.12.18.04.0
only) (diagonals

Matrix Mass  

 
















−

72000.036000.0-0.00.00.0
36000.0-72000.036000.0-0.00.0

0.036000.0-72000.036000.0-0.0
0.00.036000.0-72000.036000.0
0.00.00.036000.0-36000.0

Matrix Stiffness

 

 

 
 

frequencies, damping, and mode shapes for the structure are 
shown in Table 2. FRF measurements were synthesized, using 
the modal data, for three reference points (at masses 1, 2, and 
3). An example of one of the FRFs is shown in Figure 2. 
 
The FRF measurements were curve fit using a least squared 
error version of equation (20), to yield estimates of the 
matrices [ ]0A  and [ ]1A . The results are listed in Table 3. 
During the curve fitting process, FRF data from all five 
response DOFs, all three references, and in 2 Hz frequency 
ranges centered around each of the five resonance peaks, were 
used. 
 
The mass, stiffness, and damping matrix estimates, (recovered 
by using equations (17), (18), and (22) through (24), are 
shown in Table 4. The percentage of error of these estimates, 
as compared with the correct values in Table 2, are all less 
than .005%. Clearly, these errors are all very small, and can 
be attributed mainly to the computational accuracy of the 
computer. 



















−
−−

−−
−−

−

0.240.120.00.00.0
0.120.240.120.00.0

0.00.120.240.120.0
0.00.00.120.240.12
0.00.00.00.120.12

Matrix Damping
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Table 2. Modal Parameters at the Five DOF Model 

 
 

Mode 
Number 

  1 2 3 4 5   

Frequency 
(Hz) 

 9.11 23.56 35.81 46.14 63.89   

Damping 
(%) 

 0.95 2.47 3.75 4.83 6.69   

 DOF#1  0.580 0.635 0.593 0.623 1.011   
 DOF#2  0.559 0.480 0.259 0.041 -0.799   
Mode DOF#3  0.497 0.092 -0.366 -0.617 0.252   
Shapes DOF#4  0.380 -0.364 -0.373 0.453 -0.050   
 DOF#5  0.209 -0.459 0.459 -0.170 0.007   
          
 
 

 
 

Table 3. Estimated [ ]0A  and [ ]1A  Matrices 
 

[ ]
















−

−

04.3600017999.97-0.01-0.11-0.09
98.2249944999.9322499.80-0.11-0.03-
01.029999.82-59999.7030000.20-0.29
21.00.26-44999.75-90001.6945001.59-
34.00.090.09-90002.30-90002.15

Matrix
0

 A  

 
 

[ ]
















−−
−−
−−−

−−
−−

99987.1199995.500009.000009.00.00002-
49984.799966.1449992.700013.00.00010-
00014.099953.999981.1900029.100.00020
00060.000097.000006.1500075.3015.00031-
00073.000101.000035.000099.3030.00008

Matrix 1A  

 
 
 

 
Table 4. Estimated Mass, Stiffness, and Damping Matrices 

 

[ ]00000.260000.119999.180001.040001.0
only) (diagonals

Matrix Mass  

 
















−

71999.9535999.89-0.000.000.00
35999.89-71999.7435999.61-0.17-0.04-

0.0135999.61-71999.2836000.05-0.35
0.17-21.036000.05-72001.8636001.53-
0.130.030.03-36001.53-36001.47

Matrix Stiffness  

 

















−
−

−
−

−

99969.2311.99989-00018.000017.000004.0
11.99972-99941.2311.99986-00021.000016.0

00016.011.99938-99965.2312.00029-00024.0
00048.000077.012.00013-00077.2412.00033-
00029.000040.000014.012.00060-12.00024

Matrix Damping  

 
 

EFFECTS OF LIMITED FREQUENCY RANGE IN THE 
MEASUREMENTS 
 
Experimental FRF data which is measured with a multi-
channel FFT analyzer will typically contain frequency 
responses from close to DC (zero frequency) up to the cutoff 
frequency of the anti-aliasing filters on the front end of the 
analyzer. Even though the cutoff frequency used during the 
measurement process will typically be less than the highest 
modal frequency of the test structure, this does not necessarily 
mean that we have completely lost the characteristics of the 
high frequency modes. In fact, the high frequency modes will 
still contribute to the measured FRF data in the lower 
frequency range, even though their contribution will not be as 
great as that of the lower frequency modes. The purpose of 
this section of the paper is to demonstrate the reduced effects 
of the high frequency modes on the mass, stiffness, and 
damping matrix estimates. 
 
Synthesized FRF data of the five degree-of-freedom model 
(shown in Figure 1) was used in the following two analyses. 
All five measurements points, and all three references, were 
used in both examples. 
 
Example #1: In this example the mass, stiffness, and damping 
matrices were estimated using FRF data in the range from 8.0 
Hz to 47.0 Hz. This includes the 2 Hz frequency ranges 
centered at the resonance peaks of the first four modes, but 
excludes the fifth mode. 
 
Errors in the matrix estimates are shown in Table 5. All of the 
errors are within 0.1% for the mass and stiffness, and within 
0.6% for the damping matrix. 
 
Example #2: In this example the mass, stiffness, and damping 
matrices were estimated using FRF data in the range from 8.0 
Hz to 38.8 Hz. This includes the 2 Hz frequency ranges 
centered at the resonance peaks of only the first three modes, 
but excludes the fourth and fifth modes. 
 
Errors in the matrix estimates are shown in Table 6. Errors for 
the mass and stiffness have now grown to within 0.4%, while 
the maximum error for the damping matrix is 13.2%. 
 
These results, though still very idealized when compared with 
an actual test situation, nevertheless suggest that accurate 
mass, stiffness, and damping estimates can still be obtained 
from FRF data that is frequency limited. It is also noteworthy 
that damping cannot be estimated as accurately as mass and 
stiffness. This certainly agrees with our previous parameter 
estimation experience. 
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EFFECTS OF A LIMITED NUMBER OF DOFs 
 
Experimental FRF data is typically taken from a relatively 
small number of discrete points and directions (DOFs) on a 
structure, and these measurements may not include all of the 
"physically significant" DOFs of the structure. 
 
In applications such as automatic control, a mass, stiffness, 
and damping model involving only a small number of DOFs 
may be all that is needed to build an effective controller. 
However, questions related to whether the mass or stiffness 
distribution of the structure can be adequately modeled with 
such a truncated model have to be answered before it could be 
used. In this section, the effects of reducing the number of 
measurement locations, of DOFs, in the parameter estimation 
process are demonstrated. 
 
Synthesized FRF data for the five degree-of-freedom structure 
in Figure 1 was again used in the following two examples. In 
both cases, FRF data in 2 Hz frequency bands centered around 
each modal resonance peak, was used. 
 

 
Table 5. Errors Due to Truncation of One Modal Frequency 

Band 
 

[ ]%0.0%0.0%0.0%1.0%1.0
only) (diagonals

Matrix Mass
−−  

 

















0.0%0.0%0.0%0.0%0.0%
0.0%0.0%0.0%0.0%0.0%
0.0%0.0%0.0%0.1%0.0%-
0.0%0.0%0.1%0.1%-0.1%
0.0%0.0%0.0%0.1%0.1%-

Matrix Stiffness  

 

















0.0%0.0%0.1%-0.2%0.1%-
0.0%0.0%0.1%0.1%-0.0%
0.0%0.1%-0.1%0.6%-0.2%
0.0%0.0%0.1%-0.1%0.2%-
0.0%0.0%0.0%0.0%0.1%-

Matrix Damping  

 

 
Table 6. Errors Due to Truncation of Two Modal Frequency 

Bands 
 

[ ]%1.0%1.0%2.0%2.0%1.0
only) (diagonals

Matrix Mass
−−−  

 

















0.1%0.0%0.0%0.0%0.0%
0.0%0.0%0.2%0.1%-0.0%
0.0%0.2%0.1%-0.3%-0.1%
0.0%0.1%0.3%-0.3%0.4%-
0.0%0.1%-0.1%0.4%-0.2%

Matrix Stiffness  

 

















0.0%0.0%0.3%0.8%-0.6%
0.8%-0.3%0.1%-0.5%0.2%-
0.1%-1.3%2.9%-13.2%4.2%-
0.2%1.1%-8.6%9.2%-11.7%
0.1%-0.5%1.8%-7.4%4.6%-

Matrix Damping

 

 
 
Example #1: In this first example, FRF data was used for the 
first four of the five point masses. In other words, 
measurements from the grounded point mass were excluded. 
The total mass of the structure was also taken as 4.0, instead 
of 6.0, since the fifth mass was excluded. 
 
The percentage errors for the mass, stiffness, and damping 
matrices of the four DOF model are shown in Table 7. Errors 
in all three matrices are within 0.4%, except for the elements 
in the fourth row of the stiffness and damping matrices. Those 
estimates are too erroneous to be useful. However, the 
estimates in the fourth column of these matrices, (which are 
assumed to be symmetric), are within acceptable accuracy. 
 
Example #2: In this example, FRF data for only the first 
three point masses was used. The total mass of the structure 
was taken to be 2.4, since the fourth and fifth masses were 
excluded. 
 
The errors of the mass, stiffness, and damping estimates are 
listed in Table 8. The errors of all the elements of all three 
matrices are within 0.9%, with the exception, again, of the last 
row of the stiffness and damping matrices. 
 
These results indicate that the mass, stiffness, and damping 
properties of a structure can still be accurately identified with 
this estimation method, even when measurements from 
significant parts of the structure are not used. In the first 
example, the values of four point masses, plus the three 
springs and dampers connecting them together, were 
accurately identified. In the second example, the values of 
three point masses, plus the two springs and dampers that 
connect them together, were again correctly identified. 
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Table 7. Errors Due to Truncation of One Measurement 
Location 

 

[ ]%6.0%4.0%4.0%4.0
only) (diagonals

Matrix Mass
−  

 



















35.4%-0.4%-3.9%2.2%

0.4%0.4%0.4%-0.0%

0.0%0.4%-0.4%-0.4%-

0.0%0.0%0.4%-0.4%

Matrix Stiffness  

 



















77.2%306.6%-13.2%52.8%

0.4%-0.4%0.4%-0.0%

0.0%0.4%-0.4%0.4%-

0.0%0.0%0.4%-0.4%

Matrix Damping  

 
 

 
Table 8. Errors Due to Truncation of Two Measurement 

Locations 
 

[ ]%9.0%9.0%9.0
only) (diagonals

Matrix Mass
−−  

 


















−

−

49.3%-%9.010.9%

%9.0%9.0%9.0

0.0%%9.0%9.0

Matrix Stiffness  

 


















−

−

85.2%174.5%-13.1%-

%9.0%9.0%9.0

0.0%%9.0%9.0

Matrix Damping  

 
CONCLUSIONS 
 
We have applied a curve fitting technique which was 
originally developed for finding the modal properties of a 
structure from experimental FRF data [2], to the estimation of 
the physical mass, stiffness, and damping properties of the 
structure instead. 
 
We tried out the method on an admittedly very simple 
analytical lumped-parameter model at first, so that we could 
compare its answers to the correct results. In anticipation of its 
use on real world problems, though, we simulated two 
different conditions which will occur in testing situations; 
namely, its use with FRF measurements which were taken: 

1) over limited frequency ranges, and 

 
2) from a limited number of DOFs on the structure 

 
In both tests, the method yielded very usable results. 
 
Our plan is to apply this method next to a real structure, and 
also to build a finite element model of the structure so that we 
can compare results. 
 
A key advantage of this technique is that it can be used on the 
type of data, namely FRF data, that is commonly measured in 
a structural testing laboratory using a multi-channel FFT 
analyzer system. Another advantage is that it does not require 
the use of modal parameters, which we have found through 
prior experience [4] to be a significant source of errors. Also, 
the algorithm will handle single reference as well as multiple 
reference FRF data [3], which gives it the advantage of 
yielding more accurate results in the presence of noise and 
other measurement errors. 
 
One drawback of this method is that an estimate of the total 
mass of the structure, only for the DOFs where measurements 
are made, must be known beforehand. On the other hand, 
when a total mass value is estimated correctly, the correct 
mass distribution, as well as the stiffness and damping 
matrices result. 
 
Another drawback of this method is that large problem sizes 
(many DOFs) yield very large internal matrices. This not only 
requires large amounts of computer memory, but can also 
render this method infeasible for use on the desktop computers 
which are commonly used in testing laboratories today. 
 
Further development is needed in order to make this a reliable 
tool for use in structural testing laboratories. 
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