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Abstract 
 
This is follow-on work to an IMAC paper given last year [1] 
where it was shown that modal testing can be used to detect 
“faults” in mechanical structures. By “faults”, we mean any of 
the following occurrences: 
 
• failure of the structural material, e.g. cracking, breaking, 

or delamination. 
 
• loosening of assembled parts, e.g. loose bolts, rivets, or 

glued joints. 
 
• flaws, voids, cracks, thin spots, etc. caused during man-

ufacturing. 
 
• improper assembly of parts during manufacturing. 

 
The underlying principle behind this fault detection method is 
that vibration is a sensitive indicator of the physical integrity 
of any mechanical structure. Or, more specifically, if any of 
the mass, stiffness, of damping properties of the structure 
change due to a structural fault, then its vibrational response 
will change, and this change can be accurately measured using 
standard modal testing methods. 
 
In this paper, we carry this approach one step farther, and dis-
cuss the problem of not only detecting, but also locating, or at 
least localizing, a structural fault. We present a method for 
determining the mass, stiffness, and damping properties of the 
structure from measured Frequency Response Functions 
(FRFs), and show how changes in these parameters can be 
used to localize the fault. 
 
Introduction 
 
The linear dynamics of structures are commonly represented 
by the “force balance” shown in Figure 1. This equation bal-
ances the internal forces within a structure, which are func-
tions of its mass, damping and stiffness properties, with any 
externally applied forces, which are written on the right hand 
side of the equation. 
 
Structures begin to vibrate when external forces are applied to 
them and the resulting energy becomes trapped within the 
their boundaries. This energy is then “traded back and forth”  

between the inertial (mass) properties and the restoring (stiff-
ness) properties. 
 
If the external forces are removed, the structure will continue 
to vibrate, but eventually, the dissipative (damping) properties 
will dissipate the energy, and the structure will stop vibrating. 
 
The structural faults listed above will all have an effect on the 
mass, damping, and stiffness properties of a structure. All of 
them should cause a decrease in the structure’s stiffness, and 
some will also affect its mass and damping properties. There-
fore, structural faults should always, at a sufficient level of 
severity, cause a change in a structure’s vibrational behavior. 
 
Equivalent Forms of Structural Dynamics 
 
In addition to its differential equations of motion, a structure’s 
linear dynamics can be represented in several other equivalent 
forms, as shown in Figure 2. FRFs, Impulse Responses, or 
modal parameters each fully represent the linear dynamic 
properties of a structure. Consequently, if any of the mass, 
damping or stiffness properties of a structure should change, 
we should expect its dynamic response, and also its FRFs, 
Impulse Responses, and modal parameters to change.  
 

 
Figure 1 
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Figure 2 

 
Conversely, if the measured FRFs, Impulse Responses, or 
modal parameters of a structure were to change, then we can 
expect that the mass, damping, and stiffness properties should 
have changed also. 
 
Structural Faults and Changes in Modal Parameters 
 
In a previous IMAC paper [1], it was shown that significant 
and easily detectable changes in the modal parameters of a 
plate-with-rib structure occurred when a bolt attaching the rib 
to the plate was removed. Changes of the modal frequencies 
were easily found by curve fitting FRF measurements taken 
from the structure. Furthermore, since the modes are “global” 
properties of the structure, their frequency shifts can be de-
tected from FRF measurements which are taken from practi-
cally any point on the structure. 
 
Secondly, changes in the mode shapes from before and after 
the fault was induced, were detected by using the Modal As-
surance Criterion (MAC) on the mode shapes.  The MAC cal-
culation, which essentially measures the amount of correla-
tion, or likeness, between two mode shapes, has proven to be a 
very sensitive indicator of changes in the mode shapes. Exten-
sive testing performed recently by NASA on an aircraft struc-
ture [2], has also demonstrated the usefulness of modal fre-
quency shifts and the MAC calculation as means of detecting 
structural faults. 
 
 

 
Figure 3 

 
Why Consider Mass, Stiffness, and Damping Changes? 
 
Although changes in the modal parameters are a sensitive 
means of detecting structural faults, unless the modal parame-
ters measured are those of “local” modes, their changes cannot 
be used to locate the fault. (Local modes usually occur at 
higher frequencies, and are the result of energy being trapped 
in local areas of a structure). Modal parameters, especially for 
the lower frequency modes, are “global” properties of the 
structure, and hence will change “all over” the structure, even 
though the fault may have occurred locally. This was demon-
strated in [1] where the removal of a bolt, i.e. a local fault, 
could not be pinpointed by examining the mode shapes, even 
though some of them changed substantially. 
 
From an analytical standpoint, a stiffness change between two 
DOFs on a structure is modeled as shown in Figure 3. This 
results from a simple application of Hooke’s Law between the 
two DOFs, and is the principle used in both the Finite Element 
Method and the Structural Dynamics Modification (SDM) 
technique for modeling stiffness changes in structures. 
 
Hence, if, for instance, a crack occurred in a local area of a 
structure, one would expect the stiffnesses between those 
DOFs in close proximity to the crack to change more than the 
stiffnesses between DOFs far away from the crack. Similarly, 
if mass were removed from a local area, due to a casting void 
or break-off of a part, then the mass matrix of the structure 
should change more for those DOFs which are close to the 
mass removal point than for other DOFs. 
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This, then, is the motivation for examining changes in the 
mass, damping, and stiffness matrices of a structure. 
 
Why Start With FRF Measurements? 
 
A variety of estimation methods can be used for estimating the 
[ ]M , [ ]C , and [ ]K  matrices from measured data. For this 

paper, [ ]M , [ ]C , and [ ]K  were computed with formulas 
which involve the pseudo-inverse of the mode shape matrix. 
(See reference [3]). The modal parameters were obtained by 
curve fitting a set of FRF measurements in the normal manner 
of a modal test. 
 
In comparison to any “direct” form of parameter estimation, 
either time domain or frequency domain based, measuring 
FRFs first, and then processing them to obtain the desired re-
sults, offers a number of advantages: 
 
• A variety of multi-input / multi-output FFT analyzers 

are commercially available for making FRF measure-
ments. 

 
• A variety of broad band excitation methods can be used, 

employing low level random, sine, or transient signals. 
 
• Measurement noise can be removed by using frequency 

domain averaging methods. 
 
• Non-linear motion (distortion) of the structure can be 

removed by using random excitation and averaging. 
 
• Acceleration responses, which are typically measured, 

are easily converted to displacement responses without 
approximations. 

 
• A variety of single and multiple reference estimation 

techniques are available for obtaining modal parameters 
from FRFs. 

 
The Computational Method 
 
The equations used for the computation of the [ ]M , [ ]C , and 

[ ]K  matrices are derived from the orthogonalitiy properties of 
classically, or lightly, damped systems. They also utilize the 
pseudo-inverse of the mode shape matrix, which is easily ob-
tained once a singular value decomposition (SVD) has been 
performed on the mode shape matrix. 
 
The full mass, damping, and stiffness matrices are then com-
puted with the formulas: 
 

[ ] [ ] [ ][ ] ( )
[ ] [ ] [ ][ ] ( )
[ ] [ ] [ ][ ] ( )nnUkUK
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−−=

−−=

−−=

   (1) 

where: 

 [ ]+U  = pseudo-inverse of the mode shape matrix 

 [ ]−−m  = modal mass matrix ( )mm by   

 [ ]−− c  = modal damping matrix ( )mm by   

 [ ]−− k  = modal stiffness matrix ( )mm by   
 
 n = number of DOFs  
 m = number of modes  
 t -denotes the transpose 
 
 
We have found this procedure to be very stable computational-
ly, and to yield matrices from which the original modal pa-
rameters can still be recovered by eigensolution. This is shown 
in [3]. 
 
The real benefit of this method, though, is that if the mode 
shapes contain n-DOFs, then the full ( )nn by   [ ]M , [ ]C , 

and [ ]K  matrices can be computed, regardless of the number 
of modes used. However, if a sufficient number of modes is 
not used which adequately represents the structure’s dynam-
ics, then the [ ]M , [ ]C , and [ ]K  estimates will, of course, be 
incorrect. This modal truncation effect will be illustrated in the 
following example. 
 

 
Figure 4 
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Illustrative Example 
 
To simulate a structural fault, a stiffness change was made to 
the 3-DOF structure shown in Figure 4. To make the fault ra-
ther “insignificant”, a 5% reduction in the stiffness between 
masses 2 and 3, (from 2000 force/displacement units to 1900 
force/displacement units), was made. The modal parameters of 
the structure before and after the change was made are shown 
in Figure 5. Notice that all of the modal frequencies did shift 
downward. The mode shapes, however, remained virtually 
unchanged. 
 
Figure 6 shows the driving point FRFs at DOF 1X, for before 
and after the simulated fault. This makes it clear that the fre-
quency shift for the higher frequency (7.8 Hz) mode was 
greater than for the other two. 
 
Equations (1) were then used to compute the [ ]M , [ ]C , and 

[ ]K  matrices for the structure using its modal parameters. If 
all three modes are used, then the pseudo-inverse of the mode 
shape matrix will equal the ordinary inverse, and the formulas 
in (1) will yield exactly the same values as those given in Fig-
ure 4. If we then took the difference between the stiffness ma-
trices from before and after the stiffness change, we would 
clearly see that stiffness between DOFs 2X and 3X was differ-
ent by exactly 100 force/displacement units, while all the other 
differences would be zero. This non-zero difference of stiff-
ness between DOF 2X and 3X could then be used for locating 
the fault. 
 
However, a more realistic simulation is to use only modes 1 
and 2 to compute [ ]M , [ ]C , and [ ]K , since we can never 
measure all of the higher frequency modes of real structures. 
The differences in [ ]M , [ ]C , and [ ]K , where only modes 1  
 

Modal Parameters for Three DOF Model 

Without Simulated Fault 
  Mode 1 Mode 2 Mode 3 

Frequency (Hz)  2.217 5.216 7.795 
Damping (%)  0.359 0.153 0.102 
     
 1X 0.557 0.733 -0.388 
Mode Shape 2X 0.449 -0.054 0.543 
 3X 0.308 -0.389 -0.294 

 
With Simulated Fault ( )10023 −=Kδ   

  Mode 1 Mode 2 Mode 3 

Frequency (Hz)  2.205 5.187 7.681 
Damping (%)  0.361 0.153 0.103 
     
 1X 0.559 0.721 -0.407 
Mode Shape 2X 0.452 -0.045 0.541 
 3X 0.304 -0.398 -0.287 
     

Figure 5 

and 2 are used, are shown in Figure 7. It is clear from this that 
using only these two modes is not sufficient for locating the 
fault. Apparently, the higher frequency mode is needed. 
 
Also shown in Figure 7 are the differences in [ ]M , [ ]C , and 

[ ]K , where only modes 2 and 3 were used. This result clearly 
shows the location of the fault. 
 

 
Figure 6 

 

 
Figure 7 
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We can conclude from this example that, at least for faults 
which primarily cause stiffness modifications, changes in the 
lower frequency modes do not provide enough information to 
locate the fault, whereas changes in the higher frequency 
modes do allow us to locate the fault. We will find this same 
result in the following second example. 
 
Testing of a Aluminum Plate Structure 
 
To explore the practical usefulness of this technique, an alu-
minum plate structure was tested before and after a saw-cut 
was made in the structure to simulate a fault. The test points 
grid for the structure is shown in Figure 8. This structure 
measures 500 mm by 300 mm and has a thickness of 6 mm. 
As shown in Figure 8, a crack was simulated by making a 50 
mm saw-cut between points 12 and 18 on the structure. 
 
During the modal tests, the structure was supported by rubber 
bands which were attached to its four corners. Impact hammer 
tests were carried out to obtain the required FRF measure-
ments, and all impacts and responses were measured only in 
the Z-direction, normal to the plate surface. 
 
A two channel FFT analyzer together with the SMS STAR-
Struct structural analysis software package running on a PC-
AT were used for testing the structure. A total of 17 modes 
were identified in the measured frequency band from 18.75 Hz 
to 1580 Hz. Figure 9 shows typical FRF measurements, one 
from before and the other from after the saw-cut, with the 
modes indicated 
 
The two sets of FRF measurements were curve fit, and the 
resulting modal data sets were then used in equations (1) to 
compute the structure’s stiffness matrices for before and after 
the saw-cut. The difference between some of these stiffness 
values, (when only the three highest frequency modes were 
used), is shown in Figure 10. The columns of the stiffness 
matrix difference corresponding to DOFs 12Z, 18Z, and 24Z 
are shown. It is clear from this that the stiffness differences 
 

 
Figure 8 

 between those DOF pairs which “crossed over” the saw-cut 
were among the largest. There are, however, also some other 
“erroneous” large stiffness differences between DOFs along 
the edges of the plate. 
 

 
Figure 9 

 
Stiffness Differences for the Plate  

 
 
  DOF 12Z DOF 18Z DOF 24Z 
 
 1Z 5.056E+004 7.447L+004 6.401E+004 
 2Z 5.567E+002 4.206E+004 7.526E+004 
 3z 2.386E+004 6.535E+004 7.070E+004 
 4Z 1.621E+005 1.410E+005 1.345E+004 
 5z 6.043E+004 2.683E+004 7.068E+004 
 6Z 8.881E+003 4.392E+004 2.053E+005 
 7z 6.815E+004 3.837E+004 4.474E+004 
 8Z 8.671E+004 3.293E+004 8.058E+004 
 9Z 1.634E+004 8.864E+003 1.441E+004 
 10Z 5.553E+004 2.744E+004 9.964E+003 
 11Z 1.528E+003 2.744E+004 3.402E+004 
 12Z 1.209E+005 1.138E+005 5.632E+004 
 13Z 7.186E+004 9.313E+004 5.703E+004 
 14Z 6.287E+004 8.268E+004 6.053E+004 
 15Z 3.431E+004 3.904E+004 4.137E+004 
 16Z 5.048E+004 3.651E+004 1.645E+004 
 17Z 4.201E+004 7.405E+003 3.181E+004 
 18Z 1.138E+005 5.910E+004 4.872E+004 
 19Z 3.183E+004 5.645E+003 7.093E+004 
 20Z 7.205E+004 7.546E+003 1.245E+005 
 21Z 1.723E+004 4.467E+004 1.823E+004 
 22Z 1.504E+005 1.615E+005 9.945E+004 
 23Z 1.038E+005 6.072E+004 1.272E+005 
 24Z 5.632E+004 4.872E+004 1.049E+005 
 

Figure 10 
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Conclusions 
 
We have introduced here the concept of using not only chang-
es in the modal parameters, but also in the distributed mass, 
damping, and stiffness parameters of a structure are a means 
of detecting and locating structural faults. We demonstrated in 
two simplified cases that the concept did point toward the fault 
area. 
 
We discovered that for faults which cause stiffness changes, 
the higher frequency modes are most important. It is, of 
course, well known that stiffness is governed by the higher 
frequency modes in a structure. 
 
We used a method for computing the [ ]M , [ ]C , and [ ]K  
matrices which uses only modal data. This approach has the 
advantage of allowing the use of only those modes which are 
most influenced by the fault, i.e. have the largest frequency 
shifts or mode shape changes. However, it does not in all cases 
provide a “fool proof” answer which correctly pinpoints the 
fault area. 
 
A different approach to estimating the [ ]M , [ ]C , and [ ]K  
matrices which involves curve fitting the FRFs directly is be-
ing investigated. This may yield more accurate stiffness matrix 
estimates, even with FRF measurements which are made over 
lower frequency bands. 
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