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Abstract 
 

The most common type of modal testing system today uses 
an FFT analyzer to measure a set of Frequency Response 
Functions (FRFs) from a structure, and then uses a parameter 
estimation (curve fitting) method to determine the structure’s 
modal properties from the FRF measurements. The curve fit-
ting method typically “fits” an analytical model to the FRF 
data, (or its equivalent Impulse Response data) and estimates 
of the unknown modal parameters of the model are determined 
by this process. These parameter estimates are then assumed 
to be the correct modal parameters of the structure. 
 

In this paper, a number of “standard test cases” of synthe-
sized FRFs are presented for testing modal parameter estima-
tion methods. Twelve different FRFs are presented, that are 
synthesized using the parameters for three modes. Frequency 
spacings between the modes and modal damping values are 
varied to make up the different cases, which range from light 
modal coupling (or modal density) to very heavy coupling. 
Random noise is also added to the synthesized FRFs to simu-
late noisy measurements, giving a total of twenty-four differ-
ent test cases. The advantage of this approach to curve fitter 
testing is, of course, that the right answers (the modal parame-
ters used to synthesize the FRFs) are known, and can therefore 
be used as the basis for determining the accuracy of the fitter. 
 

Two different curve fitting methods, an SDOF (single 
mode-at-a-time) and an MDOF (multiple modes-at-a-time) 
rational fraction polynomial fitter, were tried on the test case 
FRFs, and the results are presented. In publishing these 
“standard test cases” the authors hope to encourage the adop-
tion of a suite of published test cases by the modal testing 
community which could then be used to qualify the accuracy 
of commercially available modal testing software. 
 
Introduction 
 

Modal parameters are defined as the eigenvalues and ei-
genvectors of the linear dynamic model for a vibratory struc-
ture. This linear model can be written in terms of FRFs as: 
 

{ } [ ]{ })()()( ωωω FHX =    (1) 
 

where:  { })(ωX  = n-vector of Fourier transformed dis-
placement responses 

 { })(ωF  = n-vector of Fourier transformed force 
inputs 

  [ ])(ωH  = ( )nn by   matrix of FRFs 
  n = number of test degrees-of-freedom (DOFs) on 

the structure 
  ω  = the frequency variable 
 
The FRF matrix can be written in terms of modal parameters 
as: 
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where:  [ ]kR  = ( )nn by   matrix of residues for mode 

)(k  

  kkk jp ωσ +=  = complex pole location for 

mode )(k  

 kσ  = modal damping for mode )(k  

 kω  = modal frequency for mode )(k  
  modes = the number of modes in the model 
 ∗  - denotes the complex conjugate 
 
Curve fitting, then amounts to “matching” the analytical ex-
pression (2), or an abbreviated, or equivalent form of (2), to 
experimental FRF data over a chosen frequency range. During 
the process, some, or all of the modal parameters in the model 
are determined. 
 

It is straightforward to show that the mode shape can be 
obtained from a row or column of the residue matrix [ ]kR  for 

each mode )(k , since the residues are related to the mode 
shape by the formula: 
 

 [ ] { }{ }t
kkkk uuAR =   k=1,…, modes (3) 

 
where:  { }ku  = the mode shape for mode )(k , an n-vector 

 kA  = a scaling constant for mode )(k  

  t - denotes the transpose of the mode shape 
Page 1 of 8 



IMAC X February 1992 
 
 Therefore, at least one row or column of FRF measure-
ments are typically made, (from the matrix of 2n  possible 
measurements), and these measurements are curve fit to obtain 
the modal pole locations (frequency and damping), and a row 
or column of modal residues for each mode in the model. Each 
mode is represented in an FRF by two complex parameters, a 
complex pole location and a complex residue, or a total of four 
numbers. 
 
Types of Curve Fitters 
 

During the past 20 years, numerous different curve fitting 
algorithms have been developed for fitting FRFs. They can all 
be grouped into four classes: 
 

o Local SDOF 
o Local MDOF 
o   Global 
o PolyReference 

 
Local SDOF Fitters: These curve fitters operate on one 

measurement at a time, and estimate the parameters of one 
mode at a time. Some curve fitters only estimate one of the 
four unknowns per mode. For instance, modal frequency can 
be approximated by simply using the frequency of a resonance 
peak, if one exists in the FRF data. Local SDOF fitters will 
usually give satisfactory results on data that contains lightly 
coupled modes, i.e. low modal density. This is illustrated in 
the test cases later in this paper. 
 

Local MDOF Fitters: These fitters also operate on one 
measurement at a time, but they can simultaneously estimate 
the parameters of multiple modes at a time. If a set of FRFs 
contains modes which are heavily coupled (resulting from the 
combined effect of heavy damping and small modal frequency 
separation), then an MDOF fitter is usually required to ade-
quately identify the modal parameters. These fitters typically 
apply expression (2) to the data in a least squared error sense. 
That is, a set of parameters for two or more modes is found 
which minimizes the squared difference between the FRF data 
and the model, with modes > 1. 
 

Global Fitters: Expression (2) makes it clear that all of the 
FRFs of a structure contain the same denominator, hence the 
same modal pole locations. Only the numerators, or residues, 
are different from measurement to measurement. Global fitters 
take advantage of this fact and use all, or a large number of, 
the FRFs to estimate the poles first, and then estimate the resi-
dues during a second pass through the data. This process 
yields one global estimate of frequency and damping for each 
mode, and usually provides better mode shape estimates, es-
pecially near nodal points where a mode’s residues are small 
and not well defined. 
 

PolyReference Fitters:  This class of fitters extends the idea 
of a global fitter to include multiple references, or multiple 
rows or columns, of the FRF matrix. Equation (3) shows that 
every row or column of the residue matrix contains the mode 
shape of each mode. PolyReference fitters take advantage of 

this fact and obtain additional estimates of the mode shape by 
curve fitting multiple rows or columns of data from the FRF 
matrix. These multiple estimates are then combined in a man-
ner which favors the references where each mode is more 
strongly represented, (i.e. its modal participation is greater), to 
yield a better estimate of each mode shape. 
 

Repeated roots, (i.e. two or more modes at approximately 
the same frequency but with different mode shapes), can also 
be found from multiple rows or columns of FRF data. A single 
row or column is not sufficient for this. 
 

The test cases presented here are only useful for testing the 
accuracy of Local SDOF and Local MDOF curve fitters. Ad-
ditional cases are needed to test Global and PolyReference 
curve fitters. 
 
Sources of Error 
 

When any kind of parameter estimation procedure is ap-
plied to a set of experimentally determined data, a number of 
errors can occur. In particular, when curve fitting a set of FRF 
measurements, the following problems must be dealt with: 
 

o Insufficient frequency resolution 
o Measurement distortion 
o Measurement noise 
o Determining the model size, or number of modes 

 
Insufficient frequency resolution:  This may or may not be 

a problem depending upon the type of curve fitter used. For 
instance, an SDOF “circle” fitter [1] estimates the residue of a 
single mode by fitting the equation of a circle to FRF data in 
Nyquist (real versus imaginary) format. To use this method, 
sufficient frequency resolution is required in the vicinity of the 
FRF resonance peaks to approximate circles. 
 

In general, SDOF curve fitters are applied to FRF data in 
the vicinity of each of the resonance peaks. Consequently, 
there must he a sufficient number of data points in the vicinity 
of each resonance peak to obtain accurate results. How many 
is enough? The answer depends on the type of curve fitter 
used, but a general “rule of thumb” is that five to ten data 
points between the half power points (71% of the FRF magni-
tude at the peak), is sufficient. 
 

MDOF fitters are less sensitive to frequency resolution 
since they apply the “waveform” generated by expression (2) 
to the FRF data over a range of frequencies. Therefore, they 
are more sensitive to the “shape” of the FRF data, and can 
estimate the modal parameters with far more accuracy than 
the FRF frequency resolution itself, provided that the shape of 
the data closely matches the shape of expression (2). 
 

Measurement distortion: From a curve fitting standpoint, 
the most detrimental contaminant of FRF measurements is 
distortion. Distortion is caused either by non-linear behavior 
of the structure, or by windowing effects in the analyzer. 
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Expression (2) creates a waveform for the linear dynamics 
of a structure. Therefore, only the linear dynamics of the struc-
ture can be represented in the FRFs, if they are to be accurate-
ly matched to expression (2) over a range of frequencies. 
Many structures behave non-linearly, however. SO some 
means must be employed during the measurement process to 
“filter out” the non-linear part of the structural motion and 
reserve only the linear part. A common method for doing this 
is to use random excitation and frequency domain signal aver-
aging to “average away” the nonlinear portion of the motion in 
the cross and autopower spectrum averages that are used to 
form the FRFs. 
 

The other common cause of distortion in FRF measure-
ments is due to truncation of the time domain signals by the 
finite sampling time period of the FRF analyzer. This window-
ing effect is called “leakage”.  Leakage distorts the FRF 
waveform, especially in the vicinity of the resonance peaks, 
where the data is most critical for curve fitting. 
 

Leakage can be eliminated by using periodic signals, or it 
can be minimized by using specially shaped time domain win-
dows. In the test cases presented here, no attempt is made to 
simulate distortion. Nevertheless, to successfully apply curve 
fitting, every effort should be made during the measurement 
process to eliminate, or at least minimize, distortion. 
 

Measurement noise: Numerous sources of noise can con-
taminate FRF measurements, thus making it more difficult to 
estimate modal parameters.  The different types of noise and 
how they are dealt with will not be discussed here, but suffice 
it to say that every effort should be made during the measure-
ment process to reduce noise to a minimum. 
 

In the test cases presented here, Gaussian random noise is 
added to the synthesized measurements to simulate measure-
ment noise. Even though least squared error curve fitters, like 
the ones used here, are designed to estimate parameters in the 
presence of noise, it will be shown that noise does reduce the 
accuracy of the parameter estimates. 
 

Model size, or number of modes:  The most critical step in 
curve fitting is picking the model size, or equivalently, deter-
mining how many modes are represented in the FRF data. The 
problems already mentioned (frequency resolution, measure-
ment distortion, and measurement noise), together with modal 
density, and repeated roots (modes at the same frequency with 
different mode shapes) all have a direct effect on determining 
the correct model size.  The model size, in turn, directly af-
fects the accuracy of the parameter estimates obtained by 
curve fitting. 
 

Most commercially available curve fitters require that the 
operator choose the model size. Singular value decomposition 
(SVD) and error-based iterative methods have been developed 
recently which can assist the operator in choosing the model 
size, but noise, distortion, high modal density, and repeated 
roots can still make if difficult to choose the correct model 
size. 

 
In this paper, we concentrate on just two of the causes of 

error in curve fitting, modal coupling (or density) and noise. 
 
Curve Fitting Test Cases 
 
Twelve different FRFs were synthesized using expression (2) 
and parameters for three modes.  The residues of the modes 
remained fixed at the following values: 
 
 Mode  .................... residue ......................  

No. Magnitude Phase 
1 100 0 
2 100 180 
3 100 0 

 
Modal damping was made the same for each mode in each 
case, but varied from case to case. 
 

case 1: frequencies = 50, 100, 150 Hz 
 damping, = 0.5 Hz 
case 2: frequencies = 50, 100, 150 Hz 
 damping = 1 Hz 
case 3:  frequencies = 50, 100, 150 Hz  
 damping = 5 Hz 
case 4:  frequencies = 50, 100, 150 Hz 
 damping = 10 Hz 
--------------------------------------------------- 
case 5: frequencies = 95, 100, 105 Hz 
 damping = 0.5 Hz  
case 6: frequencies = 95, 100, 105 Hz 
 damping = 1 Hz  
case 7: frequencies = 95, 100, 105 Hz 
 damping = 5 Hz  
case 8: frequencies = 95, 100, 105 Hz 
 damping = 10 Hz 
---------------------------------------------------- 
case 9: frequencies = 99, 100, 101 Hz 
 damping = 0.5 Hz 
case 10: frequencies = 99, 100, 101 Hz 
 damping = 1 Hz 
case 11: frequencies = 99, 100, 101 Hz 
 damping = 5 Hz 
case 12: frequencies = 99, 100, 101 Hz 
 damping = 10 Hz 

 
The FRFs are synthesized over the frequency range (0 Hz to 
200 Hz) using 3201 spectral lines. This gives a frequency 
resolution of f∆  = 0.0625 Hz. As a percentage of critical 
damping the modal damping varies from approximately 0.3% 
to 20%, a realistic range of damping for the majority of struc-
tures. The FRFs for test cases 1 through 12 are shown  in Fig-
ure 1. 
 
Test cases 13 through 24 are generated by adding 2.5% ran-
dom noise to each of the cases 1 through 12.  The block of 
random noise that is added to the 12  FRFs shown in Figure 2.  
The FRFs for test cases 13 through 24 are shown in Figure 3. 

Page 3 of 8 



IMAC X February 1992 
 
Curve Fitting Results 
 

SDOF Fitter: First, an SDOF rational fraction polynomial 
fitter [2] was applied to the twelve test cases, to identify the 
parameters of the center (100 Hz) mode. The SDOF fitter was 
restricted to a frequency band of data in the vicinity of the 100 
Hz mode, to minimize the influence of the other two (higher 
and lower frequency) modes. The following curve fitting 
bands were used for SDOF fitting: 
 

SDOF Curve Fitting Frequency Bands 
  cases (1 to 4) & (13 to 16): 75 Hz to 125 Hz 
  cases (5 to 8) & (17 to 20): 97.5 Hz to 102.5 Hz 
  cases (9 & 10) & (21 to 22): 99.5 Hz to 100 5 Hz 
  cases (11 & 12) &. (23 to 24): 94 Hz to 106 Hz 
 

The SDOF curve fitting results are given in Figure 4 (no 
noise), and Figure 5 (noise added). The errors are the magni-
tude of the differences between the correct values for each of 
the modal parameters and the SDOF fitter estimates. 
 

MDOF Fitter: An MDOF rational fraction polynomial fit-
ter [2] was also applied to the 24 test case FRFs, to simultane-
ously estimate the parameters if all three modes. The MDOF 
fitter was also restricted to frequency bands of FRF data in the 
vicinity of the three resonance peaks, which, generally speak-
ing, gives better results. The following curve fitting bands 
were used for MDOF fitting: 
 

MDOF Curve Fitting Frequency Bands 
cases (1 to 4) & (13 to 16): 25 Hz to 175 Hz  
cases (5 to 8) & (17 to 20): 75.5 Hz to 124.5 Hz  
cases (9, 10 & 12) & (21, 22 & 24): 92 Hz to 108 Hz  
cases 11 & 23: 70.5 Hz to 129.5 Hz 

 
Even though the parameters of all three modes were esti-

mated, only the errors of the parameters of the center (100 Hz) 
mode are given in Figure 6 (no noise) and Figure 7 (noise 
added). 
 
Conclusions 
 

Both the SMS StarModal SDOF and MDOF polynomial 
curve fitters were applied to 12 different synthesized FRFs. 
with and without additive noise. The curve fitting estimates of 
the modal parameters of these FRFs were then compared with 
the known answers. The magnitudes of the differences be-
tween the estimates and the correct answers are given in Fig-
ures 4 to 7. 
 

The SDOF results in figures 4 & 5 make it clear that the 
.SDOF fitter obtained sufficiently accurate results for cases (1 
to 6) and (13 to 18). (Those cases for which all four modal 
parameters had small errors were considered sufficiently accu-
rate). The curve fitter estimates of the additive noise cases (13 
to 18) allow slightly more error than the non-noisy cases (1 to 
6), as expected. 
 

Examining the FRFs in Figure 1. it is clear that the modal 
peaks of all three modes we clearly discernible in the first 6 
cases, but not for the remaining cases. This indicates a “rule of 
thumb” for applying SDOF fitters, namely, “only use an 
SDOF fitter where a resonance peak is clearly evident.” 
 

The MDOF fitter yielded accurate results for more cases 
than the SDOF fitter, as expected. As shown in Figures 6 & 7, 
the MDOF fitter yielded accurate results for cases (1 to 10), 
(13 to 18), and case 21. 0ne noticeable attribute of the MDOF; 
fitter is that for the non-noisy cases (Figure 6), when the mod-
al density became too great, (cases 11 & 12), all four of the 
modal parameters simultaneously incurred large errors. 
 

The synthesized FRF test cases used here had sufficient 
frequency resolution, ( f∆  = 0.0625 Hz), and yet the MDOF 
fitter could not accurately identity the parameters for cases 11 
& 12. These two are both cases of very high modal density, or 
they could also be classified as repeated root cases. Typically, 
a Global or a PolyReference fitter is needed to successfully 
handle such cases 
 

 
 

Figure 2.  2.5% Random Noise Block 
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Figure 1.  FRFs for Test Cases 1-12 

 

 
Figure 3.  FRFs for Test Cases 11-24 
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Figure 4.  SDOF Curve Fitting Errors:  Cases 1-12 Figure 5.  SDOF Curve Fitting Errors:  Cases 13-24 
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Figure 6.  MDOF Curve Fitting Errors:  Cases 1-12 Figure 7.  MDOF Curve Fitting Errors:  Cases 13-24 
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