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ABSTRACT 
 
With the increased availability of multi-channel FFT analyz-
ers, more emphasis has been placed in recent years on the de-
velopment of new methods for modal testing using multiple 
references. In the case of shaker testing, this means the use of 
two or more shakers. In the case of hammer (impact) testing, 
this means the use of two or more reference transducers. 
 
This paper presents the results of our recent experiences in 
both the collection of FRF data, and the curve fitting of it to 
obtain the modal parameters of a structure. The key difference 
between these results and those of a more traditional modal 
test is that multiple rows or columns of the structure's FRF 
matrix are not only collected simultaneously, but are also 
curve fit in a simultaneous manner. 
 
In this paper, the advantages offered by multiple reference 
modal testing and curve fitting are addressed. The theory and 
usefulness of a frequency domain curve fitting algorithm are 
extended to account for the effects of “out-of-band” modes, 
which always occur in practical applications. Verifications of 
the method and its implementation using both analytical and 
experimental FRF data are also presented in the paper. 
 
NOMENCLATURE 
 
n  = number of DOFs of the model 
m  = number of modes 
r  = number of reference points of the FRF measurements 
f  = number of frequency points used from FRF measure-

ments 
t  = time variable 
s  = Laplace variable 
 
[ ]M  = mass matrix ( )nn by   

[ ]C  = damping matrix ( )nn by   

[ ]K  = stiffness matrix ( )nn by   
 
{ })(tx  = vector of displacements ( )1by  n  

{ })(tx′  = vector of velocities ( )1by  n  

{ })(tx ′′  = vector of accelerations ( )1by  n  

{ })(tf  = vector of externally applied forces ( )1by  n  

{ })(sX  = vector of Laplace transforms of  

 displacements  ( )1by  n  

{ }ICs  = vector of initial condition terms ( )1by  n  
 
[ ])(sB  = system matrix ( )nn by   

[ ])(sH  = transfer matrix = [ ] 1)( −sB  ( )nn by   

[ ])(tH  = r columns of the matrix of impulse  

 responses ( )rn by   

[ ])(sh  = transfer matrix in principle coordinates ( )rm by   
 
[ ]L  = matrix of modal participation factors ( )rn by   

[ ]U  = matrix of mode shapes ( )nn by   

[ ]V  = orthonormal matrix of principle  

 components ( )mn by   

[ ]v  = mode shape matrix in principle coordinates ( )mm by   

[ ] [ ] [ ]cba ,,  = unknown constant matrices ( )mm by   
 
ob  = subscript denoting out-of-band mode terms  
ib  = subscript denoting in-band mode terms 
 

kp  = pole location for the thk  mode = kk jωσ +−  

kσ  = damping of the thk  mode 

kω  = damped natural frequency of the thk  mode, 

mk ,,1=  
 
INTRODUCTION 
 
A great deal of research and development has been conducted 
during the past ten years into methods for identifying modal 
parameters from frequency response function (FRF) meas-
urements which have been taken from a structure. All of these 
identification methods are commonly referred to as “curve 
fitting” methods. Single mode (or SDOF) methods were de-
veloped first, followed by multiple mode (or MDOF) methods, 
and then by GLOBAL curve fitting methods [7]. All of these 
methods operate on a set of FRF measurements which are tak-
en from a single reference point on the structure. Another way 
of saying this is that only data from a single row or column of 
the matrix of possible FRF measurements is used by these 
methods. 
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From an examination of the FRF matrix, written in terms of 
modal parameters, it is straightforward to show that a single 
row or column is sufficient for identifying all of the modal 
parameters, provided that the following assumptions are satis-
fied: 
 

Assumptions for Single Reference Testing 
 

(1) The structure’s motion is linear and symmetric 

(2) All of the modes are adequately excited at the reference 
point 

(3) The frequency and damping of each mode are “sufficient-
ly” different from all other modes 

 
Assumption (1) means that the structural motion can be ade-
quately represented by a set of second-order linear differential 
equations, with symmetric mass, damping, and stiffness matri-
ces. This also implies that the FRF matrix is symmetric. This 
condition, called Maxwell's Reciprocity, can be easily violated 
when testing large structures, and is often due to the nonlinear 
behavior of the structure. 
 
Assumption (2) can be satisfied by choosing a reference point 
where all of the mode shapes (or at least the mode shapes of 
interest) are not near their nodal points (or zero points). This 
can be a difficult assumption to satisfy with a single reference 
point, and an important mode may be missed. 
 
Assumption (3) has to do with the ability of the curve fitting 
method to correctly identify the modal parameters of very 
closely spaced modes. Some structures may in fact have two 
or more modes with the same frequency and damping values, 
(i.e. repeated roots). These parameters cannot be correctly 
found with a single reference curve fitting method. More of-
ten, though, in practical situations we encounter measurements 
which have a combination of poor frequency resolution and 
modes which are so close in frequency and damping that the 
curve fitting method cannot resolve them. 
 
With multiple reference modal testing, all of the above as-
sumptions can be relaxed. Assumption (1) can be satisfied, 
especially for large structures, by exciting them with multiple 
shakers. This, plus the use of random excitation signals, fre-
quency spectrum averaging (a standard capability of all FFT 
analyzers), and the required inversion of the input power spec-
trum matrix, will yield a set of symmetric FRF measurements 
which are a best approximation, in a least squared error sense, 
of the linear motion of the structure. 
 
Assumption (2) is more easily satisfied when multiple refer-
ences are used. It is still possible, however, to pick excitation 
(or response) references so that modes are missed. This can 
still be a particular problem on structures which have many 
local mode shapes, (shapes with many node points). 
 
Assumption (3) can be largely overcome in most practical 
testing situations by using multiple reference testing and curve 
fitting. Each additional row or column of the FRF matrix al-

lows us to resolve the difference between another pair of re-
peated modes. Hence, with two references, two repeated 
modes can be correctly identified; with three references, three 
repeated modes can be correctly identified. 
 
In summary, then, multiple reference excitation provides a 
more uniform distribution of energy to non-linear structures, 
and the use of random signals and frequency domain signal 
averaging yield more consistent FRF measurements [8]. 
 
Additionally, multiple reference measurements reduce the 
likelihood of “missing” a mode during the curve fitting pro-
cess. Multiple reference curve fitting offers its biggest ad-
vantages when the FRF data contains closely coupled (closely 
spaced and/or heavily damped) modes, or modes which are 
truly repeated. 
 
Experimental modal analysis using multiple references has 
attracted considerable attention lately, as a research subject. In 
his recent thesis [6], J. Leuridan named this overall approach 
to parameter identification the “Direct Parameter Identifica-
tion” method. He has categorized a variety of time-domain 
and frequency-domain approaches for solving this problem. 
 
In this paper we have extended the usefulness of a frequency-
domain curve fitting technique which was first published in 
1985 [2], [9]. Zhang, et al [10] modified this technique by 
adding initial condition terms, which gave more accurate re-
sults. Lembregts, et al [5] further improved the method by 
adding conjugate pole terms to the curve fitting model. 
 
In many practical applications, estimates of the parameters of 
a relatively small number of modes are needed from data that 
may contain the influential effects of many other “out-of-
band” modes. In this paper, we had extended the method de-
scribed in [5] to include additional terms which compensate 
for these out-of-band influences. 
 
We have found that this generalized form of the curve fitting 
equations consistently yields better modal parameter estimates 
than the previous forms, especially its damping estimates. 
Verifications of the method and its implementation using both 
analytical and experimental FRF data are presented in the pa-
per. Also included is a comparison of the results of this meth-
od with some analytical data for a square plate with a repeated 
mode, and a comparison with results from the previous meth-
od [5]. 
 
DATA ACQUISITION 
 
The most important goal of any modal test is to obtain accu-
rate modal parameters. Typically these parameters are ob-
tained from experimentally measured FRFs through the pro-
cess of parameter estimation, or “curve fitting”. The success of 
this process depends upon many factors. However, before any 
testing is begun, some basic questions should be answered: 
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Figure 1 Two-Shaker Test of Body-in-White 
 

 
 
(1) How well should the FRF measurements describe the dy-

namic characteristics of the structure under test? What 
frequency range and resolution are required? Which 
modes are important? 

 
(2) What is the required accuracy of the results? Will the re-

sults be used for comparison with those of a finite element 
model? Will they be used as the basis of a model which 
will evaluate methods of modifying the dynamic behavior 
of the structure? Or will the results be used just to get “an 
idea” of what's going on? 

 
(3) How well will the available curve fitting methods extract 

the dynamic characteristics (modal parameters) from the 
FRF measurements? 

 
In the majority of cases today, the data acquisition phase of an 
experimental modal analysis is performed with only one refer-
ence location. This equates to measuring one row or column of 
the experimental FRF matrix. The reason for this may be be-
cause of a limited amount of test hardware, a limited amount 
of test time, or the dynamic characteristics may be adequately 
described by a set of FRF measurements from a single refer-
ence location. The key to a successful modal test is under-

standing whether or not the set of measured FRFs are com-
plete and accurate. 
 
In single reference testing, it is assumed that all of the modes 
of interest are excited at the chosen reference location. If this 
is not the case, then those modes will not be excited, will not 
be represented in any of the FRF measurements, and will be 
“missed” in the analysis. 
 
Another assumption that is made in single reference testing is 
that the structure obeys Maxwell's law of reciprocity. Unless 
measurements are obtained from other reference locations, the 
validity of both of these first two assumptions cannot be 
checked. 
 
A third, and probably the most important assumption, of single 
reference testing is that the structure is linear and that its dy-
namics can be described by a set of second-order linear differ-
ential equations with constant coefficients. All of the modal 
parameter estimation methods are based on this model. If the 
experimental data does not match this model, poor modal pa-
rameter estimates will result. Many structures do behave in a 
linear manner and make this assumption valid. Others, typical-
ly large structures or those with many joints, do not behave 
linearly, especially when excited from one location. 
 
It has already been shown [12], [13] that acquiring more than 
one row or column of the FRF matrix can improve the results 
of a modal test. The data can be acquired either simultaneous-
ly (more than one reference at a time) or sequentially (several 
different tests with different reference locations). Both meth-
ods will yield measurements that contain multiple estimates of 
the mode shapes for modes that are excited, i.e. that partici-
pate, at the reference locations. This redundant information 
can be used by multiple reference parameter estimation algo-
rithms to obtain more accurate estimates of the modal parame-
ters. Modes which do not participate at one reference may at 
another, and therefore should be correctly identified by the 
parameter estimation process. Repeated roots (more than one 
mode at the same frequency) can also be identified from this 
data using a multiple reference parameter estimation tech-
nique. 
 
The major advantage of the sequential method of data acquisi-
tion is that it requires the minimum amount of test hardware. 
A two channel analyzer capable of an FRF measurement is all 
that is required. Because of this, however, the total test time 
will increase by a multiple of the number of different refer-
ence locations that are used. A major drawback of this meth-
od, though, is that it is no more effective than single reference 
testing in removing non-linearities from the measurements. 
 
The simultaneous technique requires more test hardware than 
the sequential method; at least a 3 channel analyzer, extra 
shakers, extra signal generators, etc. More signal processing 
power is also needed in the data acquisition system to perform 
the matrix calculations necessary to obtain the FRFs. This 
approach is also faster than the sequential method in that once 
the test set up, the FRFs from more than one column are 
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measured simultaneously. 
 
The most important advantage of the simultaneous technique 
is its ability to improve the linearity of the FRF measurements. 
When more than one exciter is used, they are typically posi-
tioned on the structure so that they will effectively excite all 
the modes of interest, and the excitation energy will be dis-
tributed evenly over as much of the structure as possible. 
 
Case 1:  An Automobile Body-in-White 
 
As a first case study of the multiple reference method, an au-
tomotive body-in-white was tested. The setup for this test is 
shown in Figure 1. The vehicle structure was mounted on four 
air rides to simulate a free-free boundary condition. Two ex-
citers were attached to the lower front rails (points 1 and 2) in 
the vertical direction, and twenty biaxial accelerometers were 
positioned on the structure to measure responses. 
 
Three separate tests were performed. Test #1 used a shaker at 
point 1 only. Test #2 used a shaker at point 2 only. Test #3 
used shakers at points 1 and 2 simultaneously. All three tests 
used random-transient excitation to minimize the effects of 
leakage, and 50 power spectrum averages were taken for each 
measurement. 
 
Modal tests are commonly preformed on car bodies to deter-
mine the first and second bending and torsion modes, for 
comparison with those from a finite element model. Without 
any prior knowledge of the test setup, one can usually look at 
the mode shapes obtained with a single exciter and clearly see 
where the exciter was positioned. The structure tends to look 
more compliant in the vicinity of the exciter. For example, the 
corner of the body where the shaker is attached will move 
significantly more than its symmetric counterpart. The reason 
for this is that this area of the structure is being driven past its 
linear range in order to develop a sufficient amount of meas-
urable motion at the other end of the structure. 
 
When the car body was tested with two shakers (references) 
simultaneously, the mode shapes where completely symmet-
rical, showed excellent correlation with the modes of the finite 
element model, and there was no evidence of distortion at the 
shaker locations. The more uniform energy distribution pro-
vided by multiple shakers, plus the signal processing of the 
simultaneous testing method, combine to remove the non-
linear behavior from the FRF measurements. 
 
Case 2:  A Square Plate 
 
To check the accuracy of the multiple reference curve fitting 
method described in the remainder of this paper, a simple 
square plate structure was tested. This test is interesting in that 
the theoretical natural frequencies and mode shapes can be 
calculated [1], [3], [4], and the plate contains repeated roots. 
The plate structure was made of steel, 12 inches square, and 
.75 inches thick, as shown in Figure 4. For test purposes it was 
mounted on a piece of foam rubber to simulate free-free 
boundary conditions. A 4-channel data acquisition system was 

used to make FRF measurements. Three accelerometers where 
mounted on the plate normal to the surface, and were the ref-
erence locations. Excitation was provided by an impact ham-
mer, and three FRFs were measured simultaneously. Data was 
collected for an impact at each of 144 points normal to the 
surface, for a total of 432 FRF measurements, which made up 
three rows of the FRF matrix. 
 
CURVE FITTING BACKGROUND 
 
Most analysis of the dynamics of structures is based upon the 
use of a set of linear second-order differential equations. For a 
structural model with n degrees-of-freedom, the equations can 
be written: 
 
[ ]{ } [ ]{ } [ ]{ } { })()()()( tftxKtxCtxM =+′+′′   

( )1by  n  (1) 
 
These equations are a statement of Newton's Second law in-
volving all of the DOFs which are chosen for the model. The 
coefficient matrices, ( [ ]M , [ ]C , & [ ]K ), contain constants 
which represent the mass, damping, and stiffness properties of 
the structure, at least for the DOFs which are included in the 
model. 
 
Since the equations of motion are linear, we can transform 
them into the Laplace domain without losing any information: 
 

[ ]{ } [ ]{ } [ ]{ } { } { }ICssFsXKsXCssXMs +=++ )()()()(2   

( )1by  n   (2) 
 
All of the physical properties of the structure are preserved on 
the left-hand side of the equations, while all of the applied 
forces and initial conditions (ICs) appear on the right-hand 
side. The initial conditions can be treated as a special form of 
the applied forces, and hence can be dropped from considera-
tion in the following development without loss of generality. 
 
To emphasize the three basic elements of any linear dynamical 
system, namely, the disturbances (or inputs), the responses (or 
outputs), and the physical system (signal filter), the equations 
of motion can be re-written: 
 

[ ]{ } { })()()( sFsXsB =  ( )1by  n  (3) 
 
where: 
 
[ ] [ ] [ ] [ ] =++= KCsMssB 2)( the System Matrix  

( )nn by   (4) 
 
Alternatively, the transformed equations of motion can be 
written: 
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{ } [ ]{ })()()( sFsHsX =  ( )1by  n  (5) 
 
where [ ])(sH  is called the Transfer Matrix, or the matrix of 
transfer functions. 
 
Clearly, the System Matrix and the Transfer Matrix are in-
verses of one another. That is, they satisfy the equation: 
 

[ ][ ] [ ]IsHsB =)()(   ( )nn by   (6) 
 
where [ ]I  is the identity matrix. 
 
The above equation is true for all values of the s-variable, and 
in particular for its values along the frequency axis ( ωj -axis) 
in the s-plane. Hence, for all values of frequency, the follow-
ing is true: 
 

[ ][ ] [ ]IjHjB =)()( ωω   ( )nn by   (7) 
 
The matrix [ ])( ωjH  is called the Frequency Response 
Function Matrix, or simply the FRF Matrix. Expression (7) is 
particularly useful since it relates the physical properties of a 
structure, namely, its mass, damping, and stiffness properties, 
and FRFs, which can be readily measured on a structure with 
any modern-day multi-channel FFT analyzer. 
 
MULTI-REFERENCE CURVE FITTING EQUATIONS 
 
This curve fitting method is the outgrowth of some recent re-
search that was first presented at IMAC III [2] in 1985. This 
original work was extended one year later to include the ef-
fects of initial conditions in the transformed equations [10]. 
This second implementation can potentially give better results, 
but the curve fitting equations still did not include the conju-
gate (negative frequency) poles associated with each mode. In 
a more recent paper, presented at IMAC IV [5], the curve fit-
ting equations with negative frequency poles were presented. 
In our experience, the equations which include the negative 
frequency poles (shown below) have yielded more consistent 
answers than those which do not include these extra terms. 
 
The inverse Laplace transform of the Transfer Matrix is a ma-
trix of Impulse Response Functions, which we will denote 
by [ ])(tH . For the cases of multiple input locations, [ ])(tH  
becomes a rectangular matrix, with the number of columns 
equal to the number of input DOFs, or references. Hence, if a 
set of measurements is made on a structure with n DOFs and r 
references then [ ])(tH  would be an ( )rn by   matrix. 
 
Writing out this matrix in terms of modal parameters: 
 

[ ] [ ][ ][ ] [ ][ ][ ]∗∗∗+= LeULeUtH tppt)(  ( )rn by   (8) 

where [ ]U  is an ( )mn by   matrix of complex mode shapes 

(m = the number of modes). [ ]pte  is an ( )mm by   diagonal 
matrix, with each “p” in the diagonal elements corresponding 
to a mode's complex pole location (frequency and damping 
values). 
 
[ ]L  is an ( )rm by   matrix of complex modal participation 
factors. These factors can be shown to be proportional to the 
mode shape values at the references. 
 
Taking the time derivative of equation (8) yields: 
 

[ ] [ ][ ][ ] [ ][ ][ ]∗∗∗∗+=′ LepULpeUtH tppt)(  ( )rn by   (9) 
 
At time 0=t , the initial displacement impulse response and 
its time derivative can then be written: 
 
[ ] [ ][ ] [ ][ ]∗∗+== LULUtH )0(  ( )rn by   (10) 
 
[ ] [ ][ ][ ] [ ][ ][ ]∗∗∗+==′ LpULpUtH )0(  ( )rn by   (11) 
 
Now, returning to the Laplace domain, the Transfer Matrix 
can also be written in terms of modal parameters: 
 
[ ] [ ][ ] [ ][ ])()()( sTUsTUsH ∗∗+=  ( )rn by   (12) 
 

where: [ ] [ ] [ ]LpssT 1)( −−=  ( )rn by   (13) 
 
The matrix [ ]ps −  is an ( )mm by   diagonal matrix, each 
term containing the pole location of a mode. Using equations 
(10), (11), and (12) above, we can now write the following 
identities: 
 

[ ] [ ] [ ][ ][ ] [ ][ ][ ])()()0()( sTpUsTpUtHsHs ∗∗∗+==−  

 ( )rn by   (14) 
 

[ ] [ ] [ ]
[ ][ ][ ] [ ][ ][ ])()(

)0()0()(

22

2

sTpUsTpU

tHtHssHs

∗∗∗+=

=′−=−
 ( )rn by   (15) 

 
Returning, for a moment, to the equations of motion (2), the 
modal properties are actually solutions to the homogeneous 
equations: 
 

[ ][ ] [ ][ ][ ] [ ][ ] [ ]001
2 =++ UApUApU  ( )nn by   (16) 

 
where: [ ] [ ] [ ]KMA 1

0
−=   ( )nn by   (17) 

 

 [ ] [ ] [ ]CMA 1
1

−=   ( )nn by   (18) 
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The conjugate modal parameters ( [ ]∗U , and [ ]∗p ) are also 
solutions to the homogeneous equations. This can be written 
in a manner similar to equation (16). 
 
Finally, we can pre-multiply equations (12), (14), and (15) by 
the matrices [ ]0A , [ ]1A , and [ ]I , and write the result as: 
 
[ ][ ] [ ] [ ][ ] [ ]
[ ] [ ][ ] [ ] [ ] [ ]0)0()0()(

)0()()(
2

10

==′−=−

+=−+

tHtHssHsI

tHsHsAsHA
 ( )rn by   (19) 

 
Or, the above equation can be re-written: 
 
[ ][ ] [ ] [ ][ ] [ ] [ ] [ ])()()( 2

1010 sHsBsBsHsAsHA −=+++  
(20) 

 
where: [ ] [ ][ ] [ ])0()0(10 =′−−= tHHAB  ( )rn by   (21) 

 [ ] [ ])0(1 =−= tHB  
 

Equation (20) is the curve fitting equation, and is valid for all 
values of the s-variable, in particular, those along the frequen-
cy axis ( )ωjs = . This equation is set up using measured 

FRF data [ ]( ))( ωjH , and solved for the unknown real-

valued matrices, [ ]0A , [ ]1A , [ ]0B , and [ ]1B . The matrices 

[ ]0A  and [ ]1A  can then be used, together with equations (17) 
and (18), to recover the mass, stiffness, and damping matrices, 
as shown in a companion paper [11]. 
 
Alternatively, [ ]0A  and [ ]1A  can be used in equation (16) to 
solve for the modal parameters of the structure. Unfortunately, 
equation (20) must be solved for n DOFs in order to yield the 
( )nn by   [ ]0A  and [ ]1A  matrices. 
 
Practically speaking, we always work in experimental cases 
with a limited number of DOFs, and seek to identify an even 
smaller number of modes over a limited frequency range. This 
leads to a different formulation of the curve fitting equations. 
 
GENERALIZED CURVE FITTING EQUATIONS 
 
In this section, we will generalize the curve fitting equation 
(20) so that we can solve it for a limited number, (say m), of 
“generalized coordinates”, or the so-called principle compo-
nents. In doing this, we will find that some extra terms are 
needed in order to take into account the effects of the remain-
ing “out-of-band” modes. This situation will always arise 
when m is smaller than n. 
 
Let the full mode shape matrix [ ]U  be decomposed into two 
groups, the mode shapes of the modes within the frequency 
band of interest [ ]ibU , and the shapes of the out-of-band 

modes [ ]obU . That is: 
 

[ ] [ ]obib UUU =   ( )nn by   (22) 
 
The ( )mn by   in-band mode shapes [ ]ibU  can be expressed 
in terms of a linear transformation of its orthonormal principle 
coordinates [ ]V  ( )mn by  , weighted by the generalized 

mode shape matrix [ ]v  ( )mm by  , in the principle coordi-
nates: 
 

[ ] [ ][ ]vVU ib =    ( )mn by   (23) 
 

where: [ ] [ ] [ ]IVV h =  ( )mm by   (24) 
 

[ ]I = the identity matrix 
h – denotes the Hermitean (transposed conju-

gate) 
 
The subset of equation (16) for only the in-band modes can be 
written: 
 
[ ][ ] [ ][ ][ ] [ ][ ] [ ]001

2 =++ ibibibibib UApUApU  

( )mn by   (25) 
 
Premultiplying equation (25) by the Hermitean of the mode 
shapes of the principle components gives:  
 
[ ][ ][ ] [ ][ ][ ] [ ][ ] [ ]001

2 =++ vapvapvI ibib  ( )mm by   (26) 
 
where: [ ] [ ] [ ][ ]VAVa h

00 =  ( )mm by   (27) 
 

 [ ] [ ] [ ][ ]VAVa h
11 =  ( )mm by   (28) 

 
Equation (26), a much reduced-in-size version of equation 
(16), can be used to solve for the in-band poles (modal fre-
quencies and damping), and generalized mode shape matrix in 
principle coordinates [ ]v , once the matrices [ ]0a  and [ ]1a  
are known. Mode shapes in physical coordinates can be recov-
ered using equation (23), once the generalized mode shapes 
[ ]v , and the matrix of principle coordinates [ ]V  are known. 
 
The generalized curve fitting equation is derived by: 
 

(1) premultiplying equation (12) by the matrix [ ]hV   
 
(2) premultiplying equation (14) by the matrix product 

[ ][ ]hVa0  
 
(3) premultiplying equation (15) by the matrix product 
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[ ][ ]hVa1  
 
(4) summing together the results from steps (1), (2), and (3) 

above 
 
(5) applying equation (26) to the in-band mode portion of the 

resulting equation. 
 
The following curve fitting equation will result: 
 
[ ][ ] [ ] [ ] [ ][ ]
[ ] [ ] [ ] [ ][ ]
[ ] [ ][ ] [ ][ ][ ]
[ ] [ ][ ][ ] [ ][ ][ ][ ]
[ ] [ ][ ][ ] [ ][ ][ ][ ]∗∗∗

∗∗∗

∗∗

++

++

+=

=′−=−+

=−+

obobobobobob
h

obobobobobob
h

obobobob
h

sTpUsTpUV

sTpUsTpUV

sTUsTUV

ththsshsI
thshsasha

)()(

)()(

)()(

)0()0()(
0()()(

22

2
10

 

 
( )rm by  (29) 

 

where: [ ] [ ] [ ])()( sHVsh h=   ( )rm by  (30) 

 [ ] [ ] [ ])0()0( === tHVth h  ( )rm by  (31) 

 [ ] [ ] [ ])0()0( =′==′ tHVth h  ( )rm by  (32) 

 [ ] [ ] [ ]obobob LpssT 1)( −−=  ( )rnm by  )( − (33) 
 
Equation (29) can be simplified: 
 
[ ][ ] [ ] [ ][ ] [ ] [ ]
[ ][ ] [ ][ ] [ ])(

)()(
21

1
1

0

1010

shspscpsc

bsbshsasha

obob −=−+−+

+++
−∗−

 

( )rm by   (34) 
 
where [ ]0b , [ ]1b , [ ]0c , and [ ]1c  are all constant matrices, 

independent of the s-variable. 
 
Equation (34) is the generalized curve fitting equation, which 
will yield solutions for a selected number of in-band modes, 
and requires a reasonable number of FRF measurements de-
fined over a limited frequency range. (Note that this equation 
is also valid for all values of the s-variable, in particular those 
along the ωj  axis, where the FRF measurement data 

[ ])( ωjH , is defined). The curve fitting equation is solved 

for the unknown matrices, [ ]0a , [ ]1a , [ ]0b , [ ]1b , [ ]0c , and 

[ ]1c . Typically, a least squared error form of the curve fitting 
equation is solved, instead of equation (34) itself. This allows 
more flexibility in terms of the amount of FRF data used in the 
solution procedure. 
 
For practical applications, only a small number, say 2, of out-
of-band modes, immediately below and above the frequency 

band of interest, are needed in the solution equations to com-
pensate for the effects of all of the out-of-band modes. If the 
out-of-band mode terms are left out of the equations, however, 
significant errors can occur in the estimates of the modal pa-
rameters of the in-band modes, especially the damping esti-
mates. (This will be illustrated later). 
 
If the principle components are assumed to be real-valued, 
then the matrices [ ]0a , [ ]1a , [ ]0b , and [ ]1b  will be real-
valued. This assumption, however, still allows complex mode 
shapes to be calculated, since the matrix [ ]v  is complex-
valued in general. Furthermore, if the damping of the out-of-
band modes is neglected, equation (34) can be rewritten: 
 
[ ][ ] [ ] [ ][ ] [ ] [ ]
[ ][ ] [ ] [ ] [ ])(

)()(
2122

3
122

2

1010

shspsscpsc

bsbshsasha

obob −=−+−+

+++
−−  

( )rm by   (35) 
 
where [ ]2c  and [ ]3c  are unknown real-valued matrices. 
 
Equation (35) is the generalized form of the curve fitting equa-
tion which contains additional terms to compensate for the 
effects of out-of-band modes. FRF measurement data, trans-
formed into principle coordinates [ ])(sh , is used in the equa-
tions, and they are solved, in a least squared error form, for six 
unknown coefficient matrices. The unknown matrices [ ]0a  

and [ ]1a  contain the structural properties, in principle coordi-

nates. The unknown matrices [ ]0b  and [ ]1b  contain the ef-

fects of initial conditions, while the matrices [ ]2c  and [ ]3c  
account for the effects of the out-of-band modes. 
 
PRINCIPLE COMPONENT REDUCTION 
 
A proper selection of the principle components of the mode 
shapes of interest can be critical to the successful use of this 
curve fitting method. The best source for determining the 
principle components is the FRF measurements themselves, 
which contain a weighted summation of the mode shapes. Fur-
thermore, the FRF data in the vicinity of each of the resonance 
peaks within the frequency band of interest contains the high-
est signal-to-noise ratio, and is the most suitable for compu-
ting the principle components. 
 
To find the principle components, the FRF measurements are 
first written as a matrix triple product: 
 
 [ ] [ ][ ][ ]WdVH =  ( ))(by  frn × (36) 
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where: [ ] [ ] [ ]IVV h =  ( ))(by  )( frfr ×× (37) 

 [ ]d  = diagonal matrix ( ))(by  )( frfr ×× (38) 

 [ ] [ ] 1−= WW h  ( ))(by  )( frfr ×× (39) 
 
The matrix [ ]V  is calculated by solving for the eigenvectors 
of the matrix: 
 

[ ][ ] [ ][ ][ ] [ ]hhh VddVHH =  ( )nn by   (40) 
 
The number of “significantly” non-zero eigenvalues (diago-

nals of the matrix [ ][ ]hdd ) gives an indication of the rank of 
the above matrix, and also indicates the number of significant 
principle components in the FRF measurements. This number 
is also used as the indication of the number of modes repre-
sented by the FRF data. The columns of the [ ]V  matrix which 
correspond to the “significant” eigenvalues are taken as the 
principle components. 
 
[ ]V , ( )mn by  , is all that is needed to set up the curve fitting 
equations. For the usual applications of light damping, the 
principle components can be taken as real numbers, which 
means that only the real part of the left-hand side of equation 
(40) is used to calculate the real matrix [ ]V . 
 
Alternatively, if the number of measurement DOFs, n, is very 
large, the following equation can be solved for the matrix 
[ ]W . 
 

[ ] [ ] [ ] [ ] [ ][ ]WddWHH hhh =  ( ))(by  )( frfr ××  (41) 
 
[ ]W  can then be used in equation (36) to solve for [ ]V . 
 
ANALYTICAL VERIFICATION: A 5-DOF MODEL 
 
This new curve fitting method was first verified by using it on 
a 5-DOF analytical model, shown in Figure 2, where the cor-
rect values of its modal parameters were known beforehand. 
The five point masses of the model are connected together 
with linear springs and dampers, and the fifth mass is also 
connected to ground. 
 
The modal frequencies, damping, and mode shapes for the 
structure are shown in Table 1. FRF measurements were then 
synthesized, using this modal data, for three reference points; 
masses 1, 2, and 3. An example FRF is shown in Figure 3. 
 
First, the FRF measurements were curve fit using a least 
squared error version of equation (20), to obtain estimates of 
the parameters for all five modes. During the curve fitting 
process, FRF data from all five response DOFs, all three refer-
ences, and in 2 Hz frequency bands surrounding each reso-
nance peak, was used. The results were found to be identical 

to the values listed in Table 1. This can be expected when all 
of the modes of a system are simultaneously identified using 
FRF data that contains no residual effects of additional modes. 
 
Effects of Out-of-Band Modes 
 
In most modal test situations we collect FRF measurements 
that contain the residual effects of out-of-band modes. It will 
be demonstrated next that the improved curve fitting equation 
(35) is required in order to take into account these out-of-band 
effects. 
 
The synthesized FRF measurements of the 5-DOF system 
were curve fit to find the parameters for the second and third 
modes only. Again, the FRF data for all five response DOFs, 
all three references, and in 2 Hz frequency bands around the 
resonance peaks of the second and third modes was used. 
 
Errors resulting from the use of curve fitting equation (20), 
which contains no compensation for the effects of the out-of-
band modes, are shown in Table 2. Errors as great as 33.9% 
(for the damping of the third mode) occurred. 
 
The errors resulting from the use of the generalized curve fit-
ting equations (35) are also shown in Table 2. In this case, all 
errors are less than 0.32%. In the use of equation (35), approx-
imate frequencies of the first and fourth modes, i.e. 9.0 and 
46.0 Hz, with no damping, were used in the out-of-band terms. 
As the results indicate, the inclusion of two out-of-band terms 
adequately compensated for the effects of all three actual out-
of-band modes. 
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Table 1. Modal Parameters of the Five DOF Model 
 

Mode Number  1 2 3 4 5 

Frequency (Hz)  9.11 23.56 35.81 46.14 63.89 

Damping (%)  0.95 2.47 3.75 4.83 6.69 
 



















0.0070.170-0.4590.465-0.209
0.050-0.4530.373-0.364-0.380

0.2520.617-0.366-0.0920.497
0.799-0.0410.2590.4800.559

1.0110.6230.5930.6350.580

Shapes
Mode

DOF#5
DOF#4
DOF#3
DOF#2
DOF#1

 

 
 
 
EXPERIMENTAL VERIFICATION: A SQUARE 
PLATE MODEL 
 
In this section the ability of the curve fitting method to cor-
rectly identify repeated roots (or modes) is examined. The 
curve fitter is used on some FRF measurements from a square 
plate. Because of the symmetry of its geometry, a square plate 
will often have repeated modes, which cannot be resolved 
correctly using a single reference curve fitting method. If there 
are two repeated roots, then at least two references (rows or 
columns) of the FRF matrix must be used in order to identify 
the modal parameters. 
 
The square plate, shown in Figure 4, was tested in a free-free 
condition using impact testing. The structure was impacted at 
144 points, in the normal direction to the surface, and three 
different reference (or response) points were used, resulting in 
a total of 432 measurements. The measurements were made 
over a frequency range from DC (zero frequency) to 2,000 Hz, 
with 5 Hz resolution between frequency lines. An example of 
a driving point FRF measurement is shown in Figure 5. 
 
Modal Frequencies 
 
From visual inspection, the measurements only contain evi-
dence of four flexual modes below 800 Hz. (The peak at 25 
Hz is due to the rigid body modes). But, the curve fitter found 
 
 

Table 2. Out-of-Band Mode Effects: 5-DOF Model 

   Without  
Out-of-Band 

Modes 

With Two 
Out-of-Band 

Modes 

  Exact 
Solution Result % 

Error Result % 
Error 

Frequency Mode 
2 

23.56 23.61 0.2 23.56 0.0 

(Hz) Mode 
3 

35.81 35.85 0.1 35.82 0.0 

Damping Mode 
2 

2.47 2.76 11.7 2.47 0.0 

(%) Mode 
3 

3.75 5.02 33.9 3.76 0.3 

 
 

 
five modes. The frequency and damping estimates are listed in 
Table 3. Notice that even though the frequency resolution of 
the FRF data was 5 Hz, the curve fitter found fourth and fifth 
modes which were about 1 Hz apart, at 577.2 and 578.5 Hz. 
 
Analytical derivations of the frequencies of the modes of a 
square plate with free-free boundary conditions are readily 
available in the literature [1], [3], [4]. The analytical frequen-
cies are shown in Table 4. Also shown are comparisons of the 
analytical and test frequencies, with and without adjustments 
for the rigid body modes at 25 Hz. The comparisons show 
very close agreement between the analytical and test results, 
especially for the adjusted test frequencies. No further at-
tempts were made to pin down the detailed differences be-
tween the analytical and test models. It is clear, however, that 
the repeated modes found were not “computational” modes. 
 
Mode Shapes 
 
The existence of repeated modes is further confirmed by an 
examination of the mode shapes. As shown in Figures 6d and 
6e, the mode shapes of the fourth and fifth modes are mirror 
images of one another. The mode shapes in Figure 6 agree 
closely (by a nodal line comparison) with those reported else-
where in the literature [1]. 
 
Modal Damping 
 
The damping of the test structure is more difficult to verify by 
comparison with analytical results. The damping estimates in 
Table 3 do, however, agree with the half power point widths 
of the resonance peaks in the FRF data. If equation (20) was 
also used to curve fit the square plate data. The results are 
shown in Table 6. These estimates are judged to be erroneous 
because of the uncharacteristic disparity of the damping val-
ues. 
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Table 3. Poles of the Square Plate from Test Data 

 Frequency 
(Hz) 

Damping 
(%) 

Damping 
(Hz) 

Mode 1 241.5 1.90 4.58 
Mode 2 340.1 0.86 2.92 
Mode 3 379.3 0.85 3.22 
Mode 4 577.2 0370 4.03 
Mode 5 578.5 0.77 4.45 

 
 
Rank Indicator 
 
Clearly one of the most useful functions of this curve fitting 
algorithm is its strong indication of the number of modes rep-
resented in the FRF data, by its calculation of the rank of the 
FRF matrix. As shown in Table 5, the rank indication clearly 
shows that there are five modes in the data, even though FRF 
data from the vicinity of only four resonance peaks was used 
in the principle component calculation. 
 
The rank indicator works best when used with only the FRF 
data from around the resonance peaks, since this data contains 
the strongest signal-to-noise ratio of the principle components, 
or mode shapes, of interest. The rank indicator, when used 
properly, can free the user of the sometimes difficult task of 
determining how many modes are actually in the data, a pre-
requisite to using any type curve fitter. This is an even bigger 
advantage in cases of closely coupled modes, and/or poor fre-
quency resolution. 

 

Table 4. Comparison of Square Plate Frequencies 

 FREQUENCY RATIO 

 Analytical* Test* Ad-
justed 

Test* Unad-
justed 

Mode 1 1.00 1.00 1.00 
Mode 2 1.47 1.46 1.41 
Mode 3 1.81 1.64 1.57 
Mode 4 2.60 2.55 2.39 
Mode 5 2.60 2.56 2.40 

 

(1)Frequency 

(k)Frequency 
  RATIO =  

 

(rigid)Frequency  - (1)Frequency 

(rigid)Frequency  - (k)Frequency 
  RATIO =  

 
 

 
 
CONCLUSIONS 
 
We have addressed some cases where multiple reference mod-
al testing and curve fitting offer distinct advantages over more 
conventional approaches. Multiple shaker testing can more 
effectively remove non-linearities when testing large struc-
tures, and yield a more consistent set of modal parameters. 
Multiple reference impact testing more effectively treats local 
modes, structures with uni-directional modes, and reduces the 
likelihood of missed modes. 
 
We have extended the usefulness of a frequency-domain mul-
ti-reference curve fitter by adding terms to the solution equa-
tions which account for out-of-band modes. In the cases given 
here, this residual compensation clearly gave improved results, 
especially the modal damping estimates which are typically 
the most difficult parameters to estimate accurately. 
 
Finally, we showed that multi-reference curve fitting can cor-
rectly identify modes which are repeated roots, a case which 
cannot be handled either theoretically or practically with sin-
gle reference methods. 
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Table 5. Rank Indicator for the Square Plate 
 

***  CRITERIA TO JUDGE RANK *** 
**************************************** 
COMP NO 1 VAL = .250409 +06 @*** @ 
COMP NO 2 VAL = .169710 +06 @** @ 
COMP NO 3 VAL = .125909 +06 @ *********** @ 
COMP NO 4 VAL = .268754 +05 @** @ 
COMP NO 5 VAL = .240035 +05 @************************ @ 
COMP NO 6 VAL = .207035 +04 @********* @ 
COMP NO 7 VAL = .567341 +03 @** @ 
COMP NO 8 VAL = .432370 +03 @** @ 
COMP NO 9 VAL = .401080 +03 @** @ 
COMP NO 10 VAL = .295200 +03 @**** @ 
COMP NO 11 VAL = .149435 +03 @** @ 
COMP NO 12 VAL = .127768 +03 @***** @ 
COMP NO 13 VAL = .564410 +02 @** @ 
COMP NO 14 VAL = 3489944 +02 @*** @ 
COMP NO 15 VAL = .327520 +02 @** @ 
COMP NO 16 VAL = .244444 +02 @** @ 
COMP NO 17 VAL = .186361 +02 @** @ 
COMP NO 18 VAL = .138792 +02 @** @ 
COMP NO 19 VAL = .126893 +02 @*** @ 
 
 
 

Table 6. Out-of-Band Mode Effects: Square Plate Model 

  
With two 

Out-of-Band 
Modes 

Without 
Out-of-Band 

Modes 

Percent 
Error 

 Mode 1 1.90 5.56 193% 
 Mode 2 0.86 1.24 44% 

Damping  Mode 3 0.85 0.99 16% 
(%) Mode 4 0.70 0.33 52% 

 Mode 5 0.77 0.39 49% 

 Mode 1 241.5 216.6 10.3% 
 Mode2 340.1 340.1 0.0% 

Frequency  Mode 3 379.3 380 .2 0.2% 
(Hz) Mode 4 577.2 577.7 0.1% 

 Mode 5 578.5 579.1 0.1% 

 
 
Multiple reference modal testing and curve fitting is more time 
consuming and more costly to implement than the more popu-
lar single reference methods, and for the majority of situations, 
their use is probably not warranted. Nevertheless, it's reassur-
ing to know that multiple reference methods have already been 
developed to the point where they can be used today in a la-
boratory environment, to more accurately characterize the 
dynamic properties of structures. 
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