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ABSTRACT 
 
Modal testing has become commonplace in many industries 
today as a research and development tool. In this capacity, it is 
used primarily during product prototype development and for 
trouble-shooting noise and vibration problems in general. 
 
Very little use has been made of this technology to date, 
though, for detecting faults in mechanical structures. By 
"faults," we mean any of the following occurrences: 
 
• Failure of the structural material, e.g., cracking or break-

ing.  
• Loosening of assembled parts.  
• Flaws, voids, cracks, thin spots, etc. caused during manu-

facturing.  
• Improper assembly of parts during manufacturing. 
 
In this paper, the correlation between a physical change and 
changes in the structure's modal parameters is investigated. A 
flat plate structure with a rib stiffener bolted to it is used as the 
test specimen and modal tests are performed on it using an 
impact hammer. 
 
This paper not only includes discussion about the advantages 
of using experimental modal data as a means of detecting 
structural faults, but also includes demonstrations of the sensi-
tivity of modal parameters to physical changes. Specifically, it 
is shown how modal parameters can detect variations in the 
bolt tightness between the plate and the rib. 
 
INTRODUCTION 
 
It is well known that the modal parameters (frequency, damp-
ing and mode shapes) of a structure are a function of its physi-
cal properties (mass, damping and stiffness). The modal pa-
rameters are solutions to the differential equations of motion 
which are themselves functions of the mass, damping and 
stiffness of the structure. Therefore, any changes in the physi-
cal properties will cause changes in the modal properties. 
 
CURVE FITTING FRF MEASUREMENTS 
 
One of the side benefits that has grown out of the increased 
use of the transfer function or frequency response function 
(FRF) approach to modal testing has been the development of 
a variety of "curve fitting" methods. Curve fitting is a crucial 
step in the transfer function approach and is required in order  

to obtain estimates of the modal parameters from FRF meas-
urements. 
 
Curve fitting is a process of matching a complex analytical 
model to measured data, usually in a least squared error sense. 
As a result of curve fitting, estimates of modal parameters 
(frequency, damping and residue) are obtained. 
 
Because an analytical waveform for a linear dynamical system 
is being matched to a set of measured FRF data over a fre-
quency range, whether or not the measured data matches the 
linear system waveform is far more important than the fre-
quency resolution, (frequency difference between data points) 
of the measurement. Hence, the accuracy of the resulting 
modal parameter estimates depends more on the "shape" of the 
FRF measurement data and not its frequency resolution. 
 
In fact, in most practical cases, the frequency and damping of 
a mode can be estimated with better accuracy than the fre-
quency resolution of the measurement data. Figure 2 illus-
trates this point. 
 
In Figure 2, two different FRFs have been synthesized using 
known modal parameters, which are listed below them. Notice 
that the only difference between the two sets of parameters is 
the modal frequency, which is 75 Hz. for one and 72.5 Hz. for 
the other. 
 
The resolution of the FRFs is 10 Hz. The 75 Hz. mode hap-
pens to have a resonance peak which corresponds with one of 
the FRF frequency points (of frequency lines), and the 72.5 
Hz. modal peaks falls in between two frequency lines. This 
causes the digital form of the two functions to be drastically 
different, as shown in Figure 2. 
 
If only peak picking were used as a means of identifying mod-
al frequency, then both FRFs would indicate the 
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Figure 1. Plate with a Rib Stiffener 
 
modal frequency at 75 Hz., with 10 Hz. of uncertainty with 
respect to the actual value. However, with the use of a curve 
fitter, the accuracy of the modal frequency estimate is much 
better. 
 
Both FRFs were curve fit using a polynomial-based frequency 
domain curve fitter [3]. The resulting modal parameter esti-
mates are listed in Figure 2. 
 
Damping estimates are also improved with the use of a curve 
fitter. If the "half power point" method were used to estimate 
damping, the width of the resonance peak at the half power 
points (or 70.7 percent of the peak magnitude value), would be 
in great error due to the error in the peak magnitude itself, and 
the lack of data at the half power points. Notice that the curve  
 

 
Figure 2. Curve Fir of Low Resolution FRFs 

 
fitter has no trouble correctly estimating the damping, as 
shown by the curve fitting estimates in Figure 2. 
 
Figure 3 is another illustration of the accuracy of the polyno-
mial curve fitter. In this case, the frequency of the resonance 
lies outside of the band of measurement data which was used 
for curve fitting. The data used for curve fitting is indicated by 
the vertical lines, which are located at about 20 Hz. and 43 Hz. 

 

 
Figure 3. Curve Fit of FRF Away from Resonance 

 
Again, the curve fitter was able to very accurately estimate the 
modal parameters of the resonance because the complex form 
of the measurement data within the measurement band is 
unique and only one analytical model can be fit to it. 
 
Clearly then, curve fitting is preferred as a means of more ac-
curately estimating modal frequency and damping. A state-of-
the-art curve fitter could be used on FRF measurements taken 
from successive modal tests and any changes in these parame-
ters would indicate a physical change in the structure. 
 
COMPARISON OF MODE SHAPES 
 
Mechanical resonances are described with the same concepts 
and mathematics as resonances in electronic networks. A vi-
brating structure behaves in the same manner as an electronic 
amplifier. That is, a small amount of input applied at the right 
frequency can yield a greatly amplified output. This "unpre-
dictable" nature of mechanical resonances under dynamic 
loads, as compared to the very predictable deflections under 
static loads, is what causes structures to make noise, vibrate 
excessively and break. 
 
The one unique characteristic of a mechanical structure, which 
is not found in an electronic network, however, is the spatial 
description of the strength (amplitude) of each resonance. This 
is known as the mode shape. 
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Each mode of vibration or resonance, has a mode shape asso-
ciated with it, which describes spatially the predominant mo-
tion of the structure at or near the frequency of the mode. 
 
Just as with modal frequency and damping, if a physical 
change occurs in the structure, its mode shapes will also 
change to reflect the change. When a change does occur, all of 
the mode shapes will be changed differently, depending upon 
where on the structure the change occurred and what the mode 
shapes look like in the vicinity of the change. 
 
MODE SHAPE PLOTTING 
 
Given that the mode shapes will change when a physical 
change occurs, we need a method for detecting the change. 
One is to simply plot the mode shapes obtained from succes-
sive tests super-imposed upon one another. Since mode shapes 
are not unique in value, but only in "shape," they can always 
be scaled so that they can be plotted together. This is certainly 
quick and simple, but is not a quantitative method for compar-
ing mode shapes. 
 
MAC VALUES 
 
A simple quantitative method for comparing mode shapes is 
the Modal Assurance Criterion (MAC) method [1]. This calcu-
lation, which is no more than a DOT product between two 
complex unit vectors, results in a single number for comparing 
shapes; one (1) if they are identical shapes and zero (0) if they 
are orthogonal to and very unlike, one another. 
 
Again, this method could be used on mode shapes taken from 
successive tests of a structure and if the MAC values of all 
mode shapes from the two tests are within a prescribed limit 
(e.g., greater than 0.95), it is assumed that the structure has not 
changed. 
 
RANK ORDERING OF DIFFERENCES 
 
Another advantage of mode shapes is that they can be used to 
"localize" the change on the structure. Mode shapes can be 
sampled (measured) from as many points on the structure as 
desired. As with time domain sampling of a signal, the more a 
mode shape is sampled across the span of a structure, the more 
accurately a change can be pin-pointed to a specific region of 
the structure when a change in its mode shapes is detected. 
 
Since each component of a mode shape is associated with a 
specific point on the structure and direction of motion, the 
differences between mode shapes from successive tests could 
be rank ordered, from the largest difference to the smallest. 
This type of ordering will point out where on the structure the 
greatest change in mode shapes has occurred, which should 

localize the physical change also. 
 
COMPARISON OF NODE LINES 
 
In examining a mode shape, one might ask, "Where is the 
mode shape most sensitive to changes in the structure?" One 
way to answer this is to consider the slope of the mode shape, 
i.e., its first derivative with respect to the space variable. 
 
The closed form expressions for the mode shapes of a straight 
beam are all represented by sine, cosine and hyperbolic sine 
and cosine functions [2]. For example, the closed form solu-
tion for the mode shape of the thi  mode of a pinned-pinned 
beam is:   
 

( )Lxixi πsin)(Shape Mode =  
 
where: 
 
 L = Length of the beam  
 x = Distance along the beam 
 
A node point of a mode is defined as a point where its mode 
shape is zero. A node point can also be defined in a specific 
direction. For example, all points where the mode shape is 
zero in a normal direction to the plane of a surface can be con-
sidered as node points. A node line, then, is defined as a locus 
of node points. 
 
For a pinned-pinned beam, the node points for the thi  mode 
occur at those values of x where: 
 

( ) 0sin =Lxiπ  
 
Now, since the derivative of the sine is the cosine, it follows 
that the maximum slope or rate of change of the mode shape 
always occurs at the node points. It can therefore be conclud-
ed that any change in the relative amplitudes of a mode shape 
will have its greatest effect at the node points. Furthermore, 
any changes in a mode shape should cause the location of the 
node points to move. 
 
Hence, it is proposed here that the node lines of the modes of a 
structure be monitored as a means of detecting physical 
changes. Figure 4 shows the node line plots for the first eight 
modes of a flat plate structure. The node lines are drawn by 
connecting node points, which are computed as points where 
the mode shape is zero in a normal direction to the surface of 
the structure. 
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Figure 4. Mode Shapes with Node Lines 
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NODE LINE MAC 
 
As a quantitative means of determining when a node line has 
moved, a MAC calculation can be done on the node points. 
The coordinates of each set of node points for a mode can be 
considered as a vector quantity. The MAC calculation is done, 
then, on the same set of node points from two successive 
modal tests of the structure. A MAC value of less than 1 
would indicate that a change had occurred, but would give no 
information about where it had occurred. 
 
RANK ORDERING OF NODE POINT DIFFERENCES 
 
Just as with the mode shapes themselves, movement of node 
lines will indicate not only that a physical change has oc-
curred, but also where it has occurred. 
 
A quantitative indication of where a change has occurred can 
be done by rank ordering the geometric difference between 
node points from two successive tests of the structure. This is 
a straightforward calculation which is simply the square root 
of the squared differences between the node points in the X, Y 
and Z directions. 
 
AN ILLUSTRATIVE EXAMPLE 
 
To illustrate all of the above measures of change in the modal 
parameters of a structure, an aluminum flat plate with a rib 
stiffener bolted along its centerline was tested as shown in 
Figure 1. The rib was bolted on with six equally spaced bolts. 
The plate structure was tested with all of the bolts tightened 
and then with certain bolts removed. 
 
Case #1: Center Bolt Removed 
 
In this case, one of the bolts on the center of the plate was 
removed to simulate a physical change in the plate-rib assem-
bly. The frequencies of the first seven modes before and after 
the bolt was removed are shown in Figure 5. Clearly, the high-
er frequency modes have dropped in frequency due to the re-
moval of the bolt. 
 
Figure 6 shows the MAC values for the modes shapes before 
and after the bolt was removed. These values indicate that all 
of the mode shapes, except those for modes 4 and 5, did not 
change as a result of the bolt removal. 
 

 With Bolt Without Bolt  
MODE FREQ (Hz) FREQ (Hz) DIFFERENCE 

(Hz) 
1 106.687 105.635 -1.052 
2 190.636 190.186 -0.450 
3 247.650 242.994 -4.656 
4 259.222 254.200 -5.022 
5 261.955 260.137 -1.818 
6 470.489 466.324 -4.165 
7 494.810 484.482 -10.328 

Figure 5. Modal Frequencies Before and After Center Bolt Removal 

 

 With Bolt 

 Mode 1 2 3 4 5 6 7 

 

1 0.98 0.00 0.01 0.00 0.01 0.06 0.00 
2 0.00 0.97 0.00 0.00 0.00 0.00 0.01 
3 0.00 0.00 0.96 0.01 0.03 0.02 0.00 
4 0.00 0.02 0.00 0.62 0.33 0.00 0.01 
5 0.00 0.01 0.01 0.35 0.54 0.00 0.01 
6 0.61 0.00 0.00 0.00 0.00 0.95 0.00 
7 0.01 0.00 0.00 0.02 0.01 0.01 0.94 

Figure 6. Mode Shape MAC Values Before and After Center 
Bolt Removal 

 
Figure 7 shows the mode shapes for modes 4 and 5 before and 
after the bolt was removed. The shapes show apparently little 
change, but the low MAC values between them indicate the 
strong sensitivity of the MAC calculation for determining 
mode shape changes 
 

 
Figure 7. Mode Shapes of Modes 4 and 5 Before and After 

Center Bolt Removal 
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Case #2 End Bolt Removal 
 
In this case, only one of the bolts on the end of the rib was 
removed from the plate-rib assembly and a modal test per-
formed on it. 
 
Figure 8 shows the frequencies of the first seven modes before 
and after the end bolt was removed. This caused even greater 
frequency shifts than removal of the center bolt. 
 
 

 With Bolt Without Bolt  
Mode FREQ (Hz) FREQ (Hz) DIFFERENCE 

(Hz) 
1 106.687 103.796 -2.891 
2 190.636 188.184 -2.452 
3 247.650 233.385 -14.265 
4 259.222 242.108 -17.114 
5 261.955 259.559 -2.396 
6 470.489 442.153 -28.336 
7 494.810 464.330 -30.480 

Figure 8. Modal Frequencies Before and After End Bolt Re-
moval 

 
The mode shape MAC values are given in Figure 9 and indi-
cate that all of the mode shapes (except the first one) have also 
changed substantially. 
 

  With Bolt 

 Mode 1 2 3 4 5 6 7 

 

1 0.98 0.00 0.00 0.00 0.01 0.05 0.00 
2 0.01 0.79 0.00 0.02 0.01 0.01 0.01 
3 0.00 0.01 0.13 0.45 0.42 0.00 0.00 
4 0.00 0.00 0.81 0.04 0.08 0.01 0.00 
5 0.00 0.00 0.01 0.45 0.46 0.00 0.01 
6 0.00 0.00 0.00 0.01 0.02 0.01 0.82 
7 0.06 0.00 0.00 0.00 0.00 0.96 0.03 

Figure 9. Mode Shape MAC Values Before and After End Bolt 
Removal 

 
Figure 10 shows plots of the difference between the mode 
shapes from before and after the end bolt removal. Clearly, 
there are large differences in the shapes, but they do not pin-
point the location of the fault. One explanation for this is that 
all of these modes are "global" in nature (which is true for 
most simple structures) and hence will change globally even 
due to a "local" change such as the end bolt removal. 
 
Figure 11 shows the mode shape node lines from before and 
after the end bolt removal. Again, the movement of the node 
lines clearly reflects the effect of the bolt removal. 
 

CONCLUSIONS 
 
We have introduced and demonstrated the use of several new 
quantitative methods for measuring changes in the modal pa-
rameters of a structure. It was also assumed at the outset of 
course, that changes in the modal parameters of a structure are 
sensitive indicators of changes that have occurred in its physi-
cal properties. This is readily apparent from an examination of 
the dynamical equations of motion of an elastic structure. 
 
The methods demonstrated here are based upon the curve fit-
ting of experimental FRF data, which could be acquired with 
any modern multi-channel fast Fourier transfer analyzer and 
processed automatically in an on-line computer-based moni-
toring system. The core of the monitoring scheme, then, is to 
detect "significant" changes in the modal parameters of the 
structure. 
 
Any set of measurements that are repeatedly made over time 
will exhibit variations. These variations are caused either by 
the "natural" statistical variation in the measurement process, 
due to numerous sources of measurement error or they are 
caused by a physical change in the structure, i.e., an "assigna-
ble cause." 
 
The Statistical Process Control (SPC) method, popularized by 
Demming [4] for use in manufacturing quality control, is a 
way of determining whether or not a variation is "statistical" 
or due to an assignable cause. SPC charts could also be used in 
the proposed monitoring environment to show whether the 
modal parameter estimates are within their statistical limits or 
are developing a trend which is caused by a structural fault. 
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Figure 10.  Mode Shape Differences Before and After End Bolt Removed 
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Figure 11.  Mode Shape Node Lines Before and After End Bolt Removed 
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