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ABSTRACT 
 
Structural Dynamics Modification has become a practical 
tool in the last few years for improving the engineering de-
signs of mechanical systems. It provides a very quick and 
inexpensive approach for investigating the effects of design 
modifications to a structure, thus eliminating the need for 
costly prototype fabrication and testing. It also has the 
unique advantage of working directly with data obtained 
either from a modal test, or from a finite element model of 
the structure. 
 
Once the modal properties of a structure are known, SDM, 
which is based on the eigenvalue modification technique 
[1], can be used to predict the dynamic effects of certain 
kinds of “local” design modifications. These modifications 
are typically expressed in the form of point mass, scalar 
spring, and scalar damper additions or removals at or be-
tween the existing test points of the structure. This tech-
nique is very efficient computationally, since the size of the 
eigenvalue problem to be solved is typically orders of mag-
nitude less than an eigenvalue problem in special coordi-
nates, e.g. finding the eigenvalues and eigenvectors of a 
finite element model. 
 
While the application of scalar mass, spring, or damper 
modifications can be handled very efficiently with the cur-
rently available numerical schemes for SDM, more general 
matrix type modifications, which represent perhaps hun-
dreds of scalar element modifications, are more desirable for 
most practical applications. 
 
In this paper, the local modification method is formulated so 
that general matrix modifications can be made with it. Then, 
a case study is presented to demonstrate its capability, accu-
racy, and computational efficiency. This new implementa-
tion of SDM is called S2DM since it yields in one eigenso-
lution the same result as repeated applications of the SDM 
method. 
 
NOMENCLATURE 
 
n = number of DOFs of the dynamic model  
m = number of modes  
t = time variable  

s = Laplace variable 
 
[ ]M  = mass matrix ( )nbyn  

[ ]C  = damping matrix ( )nbyn  

[ ]K  = stiffness matrix ( )nbyn  
 
[ ]m  = modal mass matrix ( )mbym 22  

[ ]c  = modal damping matrix ( )mbym 22  

[ ]k  = modal stiffness matrix ( )mbym 22  
 
{ })(tx  = vector of displacements ( )1byn  

{ })(tz  = vector of modal displacements ( )12 bym  

{ })(tx′  = vector of velocities ( )1byn  

{ })(tx ′′  = vector of accelerations ( )1byn  

{ })(tf  = vector of externally applied forces ( )1byn  
 
{ }ICs  = vector of initial condition terms ( )1byn  

{ })(sX  = Laplace transforms of displacements ( )1byn  

{ })(sZ  = Laplace transforms of modal  

displacements ( )12 bym  
 
[ ])(sB  = system matrix ( )nbyn  

[ ]U  = matrix of mode shapes ( )mbyn 2  
 

kp  = pole location for the thk  mode = kk jωσ +−  
 

kσ  = damping of the thk  mode 
 

kω  = damped natural frequency of the thk  mode, 

mk ,,1=  
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INTRODUCTION 
 
A variety of numerical methods have been developed over 
the years which use only the eigenvalues and eigenvectors, 
(i.e. the modal properties) of a structure, and predict the 
structure's new modal properties after a physical change has 
been made to it. These same techniques can also be used for 
substructuring; that is, taking the modal properties of a 
number of subsystems and deriving the modal properties of 
the overall system after the subsystems have been connected 
together with spring and damper elements. Among the more 
traditional methods for performing these modifications are 
modal synthesis, the Lagrange multiplier method, and 
diakoptics. More recently, the local eigenvalue modifica-
tion technique has been developed, primarily through the 
work of Weissenburger, Pomazal, Hallquist, and Snyder. 
Reference [2] provides a summary of these developments. 
 
All of the above work was done primarily with analytical 
data. The local eigenvalue modification method was devel-
oped for use with finite element models. The primary objec-
tive was to provide a more efficient means for investigating 
physical changes to a structure, by making modifications to 
its dynamic model and then solving for a new eigensolution 
without solving an eigenvalue problem in physical coordi-
nates. 
 
In 1978, we at SMS began using the local eigenvalue modi-
fication method with modal data which was derived directly 
from a modal test. This implementation was made available 
to the public in the form of commercial software which 
could be used in a laboratory test system. The computational 
efficiency of this method made it very attractive for imple-
mentation in a desktop computer system which could 
 
be used in a laboratory. importantly, however, was the fact 
that it gave reasonably accurate results, even with laboratory 
derived modal data, and with only a relatively small number 
of modes represented in the data base. 
 
Some of the effects of using a small number of modes in the 
data base, referred to as modal truncation, were presented in 
[3]. Other comparative results were presented in [1]. A key 
advantage of local eigenvalue modification is that it requires 
only modal data to characterize the dynamics of the struc-
ture, and it directly provides a new set of modal data for the 
modified structure. Hence, a series of more complex modi-
fications can be performed by applying modifications, one 
after another, to the modal data which results from each 
previous modification. 
 
As will be shown in the following theoretical development, 
the computational efficiency of local eigenvalue modifica-
tion comes from the fact that scalar modifications (point 
masses, linear springs, and linear dampers) only require the 
solution of a one dimensional eigenvalue problem in order 
to determine the modified modal properties. Hence compu-
tational speed is independent of the number of physical 

DOFs in the model, and very large models can be handled 
as efficiently as small ones. 
 
Although this technique is very advantageous when only a 
few scalar modifications are needed, its computational ad-
vantage, both in terms of speed and accuracy, diminishes as 
the number of modifications to be made increases. 
 
The fundamental process of structural modifications is the 
solution of an eigenvalue problem. Using a straightforward 
approach, if the mass, damping, and stiffness properties of 
the structure are known, then the modal properties of the 
modified structure would be found by first making the ap-
propriate changes to the mass, damping, and stiffness coef-
ficient matrices of the equations of motion, and then solving 
for the eigenvalues and eigenvectors of the modified equa-
tions. This would amount to solving an eigenvalue problem 
in physical coordinates. For example, if there were 1000 
DOFs in the dynamic model, the eigensolution would re-
quire the manipulation of matrices of size 1000 by 1000. 
 
What makes the SDM method efficient is that it solves the 
eigenvalue problem in modification space instead of physi-
cal space. Hence, to add a single stiffener to a structure 
which is modeled with 1000 DOFs using SDM, only a sca-
lar (1 by 1) eigenvalue problem is solved instead of a 1000 
by 1000 problem. 
 
An alternative approach is to solve the modified equations 
of motion in modal space, which is still more efficient than 
solving the problem in physical space. Hence, if the eigen-
value problem is formulated in modal space and the dynam-
ics of the structure are represented by the parameters of 10 
modes of vibration, then the modes of the modified structure 
can be found by solving a 10 by 10 problem instead of a 
1000 by 1000 problem. 
 
The advantage of modal space over modification space is 
that by formulating the problem in modal space, the size of 
the problem is independent of the number of scalar modifi-
cations made to the structure. Therefore, many modifica-
tions can be modeled simultaneously in modal space, and 
the eigenvalue problem size, and therefore the execution 
time, does not increase. 
 
BACKGROUND THEORY 
 
The local eigenvalue modification process begins with a 
dynamic model of the unmodified structure. This model can 
be represented either in terms of the mass, damping and 
stiffness properties of the structure, or in terms of its modal 
properties: frequencies, damping, and mode shapes. The 
modal data can be obtained either from a modal test of the 
structure, or from an eigensolution of the differential equa-
tions of motion, which are typically generated with finite 
element modeling techniques. 
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Mass, stiffness, and damping modifications are made to the 
structure by making additions to, or subtractions from, the 
mass, stiffness, or damping coefficient matrices of the dif-
ferential equations of motion. 
 
The equations of motion of the unmodified structure are 
written as a set of linear second-order differential equations. 
For a structural model with n-degrees of freedom, they are 
written as: 
 
[ ]{ } [ ]{ } [ ]{ } { })()()()( tftxKtxCtxM =+′+′′    ( )1byn (1) 
 
Similarly, the equations of motion of the modified structure 
are written as: 
 
[ ]{ } [ ]{ } [ ]{ } { })()()()( tftxKKtxCCtxMM =∆++′∆++′′∆+
 

( )1byn (2) 
 
where the matrices [ ]M∆ , [ ]C∆ , [ ]K∆  contain the mass, 
damping, and stiffness modifications, respectively, of the 
modified structure. 
 
Transformed Equations of Motion: Since the equations of 
motion are linear, they can be transformed to the frequency 
domain using the Laplace transform without losing any in-
formation. The equations then take the form: 
 
[ ]{ } [ ]{ } [ ]{ } { } { }ICssFsXKsXCssXMs +=++ )()()()(2

  
( )1byn (3) 

 
All of the physical properties of the structure are preserved 
in the left-hand side of the equations, while the applied forc-
es and initial conditions { }ICs  are contained on the right-
hand side. The initial conditions can be treated as a special 
form of the applied forces, and hence can be dropped from 
consideration in the following development without loss of 
generality. 
 
To emphasize the three basic elements of any linear dynam-
ic system, namely, the externally applied disturbances (in-
puts), the responses (outputs), and the physical system (line-
ar filter), the transformed equations of motion can be rewrit-
ten as: 
 

[ ]{ } { })()()( sFsXsB =    ( )1byn (4) 
 
where: 
 
 [ ] [ ] [ ] [ ]KCsMssB ++= 2)(  ( )nbyn (5) 
 
 [ ])(sB  is defined as the system matrix. 

Modal Coordinates:  The modal parameters of a structure 
are actually the solutions to the homogeneous equations of 
motion. That is, when { } { }0)( =sF  the solutions to equa-
tions (4) are complex valued eigenvalues and eigenvectors. 
The complex eigenvalues occur in conjugate pairs, 
( )∗kk pp , , and are solutions to the determinant equation: 
 

[ ]( ) 0)(det =sB     ( )11by  (6) 
 
The eigenvalues, or poles of the system, can be written: 
 

kkk jp ωσ += ,  mk ,,1=  
 

kkk jp ωσ −=∗ ,  mk ,,1=  
 
Each eigenvalue has an eigenvector corresponding to it, and 
hence the eigenvectors also occur in conjugate pairs 
{ } { }( )∗

kk uu ,  as solutions to the equations: 
 
( )[ ]{ } { }0=kk upB , mk ,,1=  ( )1byn  

(7) 
 
( )[ ]{ } { }0=∗∗

kk upB , mk ,,1=  ( )1byn (8) 
 
The eigenvectors, or mode shapes, can be assembled into a 
matrix: 
 
[ ] { } { } { }{ }{ } { }[ ]∗∗ ∗= mm uuuuuuU  ,,,,, 2121  ( )mbyn 2  (9) 
 
Using the mode shape matrix, the motion of the structure 
can be represented in modal coordinates as: 
 

{ } [ ]{ })()( tzUtx =  ( )1byn  (10) 
 
Applying this transformation to equations (4) gives: 
 

[ ][ ] [ ][ ] [ ][ ][ ]{ } { })()(2 sFsZUKUCsUMs =++  ( )1byn  (11) 
 
Then, premultiplying equation (11) by the transposed con-
jugate of the mode shape matrix [ ]( )tU  gives: 
 

[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ][ ]{ } [ ] { })()(2 sFUsZUKUUCUsUMUs tttt =++
  

( )mbym 22  (12) 
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We can now define three new matrices: 
 
Modal Mass = [ ] [ ] [ ][ ]UMUm t=  ( )mbym 22  
(13) 
Modal Damping = [ ] [ ] [ ][ ]UCUc t=  ( )mbym 22  (14) 

Modal Stiffness = [ ] [ ] [ ][ ]UKUk t=  ( )mbym 22  (15) 
 
The equations of motion in modal coordinates now be-
come: 
 

[ ] [ ] [ ][ ]{ } [ ] { })()(2 sFUsZkcsms t=++  ( )mbym 22  (16) 

Damping Assumptions: So far, no assumptions have been 
made about damping other than the fact that it can be mod-
eled with a linear model. If no further assumptions are 
made, then the modal mass, damping, and stiffness matrices 
are, in general, full (non-diagonal) matrices. This case is 
referred to as effective linear, or non-proportional damp-
ing. 
 
If, however, it is assumed that the structure has no damping 
[ ] [ ]( )0=C , then it can be shown that the equations of mo-

tion (16) are uncoupled; that is, the modal mass and stiff-
ness matrices are diagonal matrices. Alternatively, if it is 
assumed that the damping matrix is proportional to the 
mass or stiffness matrices, ( [ ] [ ] [ ]KMC βα += , βα ,  
are proportionality constants), then the equations of motion 
(16) are again uncoupled, and the modal mass, damping, 
and stiffness matrices are diagonal matrices. 
 
Unfortunately, neither of the above damping assumptions 
applies very well to real structures. Real structures always 
have some amount of damping, and there are no physical 
reasons for assuming that damping is proportional to mass 
or stiffness. 
 
A better assumption, and one which will yield an approxi-
mation to the uncoupled equations, is to assume that the 
damping forces are significantly less than the Inertial 
(mass) or the restoring (stiffness) forces on the structure. 
In other words, an assumption is made that the structure is 
lightly damped. 
 
Most structures which exhibit resonance conditions can be 
considered as lightly damped structures. Consequently, their 
modes are also lightly damped. Structures with modal 
damping of 10 percent of critical or less can be considered 
as lightly damped. 
 
If light damping is assumed, then it can also be shown that 
the modal mass, damping, and stiffness matrices approxi-
mate diagonal matrices. Furthermore, the mode shapes can 
be shown to be approximately real valued so that the 2m 
equations become redundant, and can be replaced with m 
equations, one corresponding to each mode. 

 
All of the above cases of damping can be summarized as 
follows: 
 
Damping Mode Shapes Modal Matrices 

Non-Proportional Complex Non-Diagonal 
( )mbym 22  

None Real Diagonal 
( )mbym  

Proportional Real Diagonal 
( )mbym  

Light Almost Real Almost Diagonal 
( )mbym  

 
If the mode shapes, which are eigenvectors, are scaled so 
that the modal mass matrix diagonal elements are unity, 
then the modal mass matrix becomes an identity matrix, and 
the equations of motion become: 
 

[ ] [ ] [ ][ ]{ } [ ] { })()(2 22 sFUsZsIs t=Ω++ σ  ( )1bym (17) 
where: 
 
 [ ]I  = identity matrix ( )mbym  

 [ ]σ2  = diagonal modal damping matrix ( )mbym  

 [ ]2Ω  = diagonal modal frequency matrix ( )mbym  

 [ ] [ ]222 ωσ +=Ω  
 
From equation (17) it is clear that the entire dynamics of the 
unmodified structure can be represented by modal parame-
ters: frequencies, damping, and mode shapes scaled to unit 
modal masses. 
 
The equations of motion for the modified structure, trans-
formed to modal coordinates, can be written in a similar 
manner as: 
 

[ ] [ ] [ ][ ]{ } [ ] { })()(2 sFUsZkcsms t=++  ( )1bym  (18) 

where: 
 
 [ ] [ ] [ ] [ ][ ]UMUIm t ∆+=  ( )mbym  (19) 

 [ ] [ ] [ ] [ ][ ]UCUc t ∆+= σ2  ( )mbym  (20) 

 [ ] [ ] [ ] [ ][ ]UKUk t ∆+Ω= 2  ( )mbym  (21) 
 
In this case, the mode shape matrix is of dimension 
( )mbyn  since the mode shapes are approximately real 
valued. 
 
The homogeneous form of equation (18) must be solved to 
find the modal properties of the modified structure. Using 
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the approach of Hallquist, et al [2], an additional transfor-
mation of the modification matrices [ ]M∆ , [ ]C∆ , [ ]K∆  
is made which results in a reformulation of the eigenvalue 
problem in modification space. For a single modification, 
this problem becomes a scalar eigenvalue problem, which 
can be solved quickly and efficiently. The drawback to mak-
ing one modification at a time, however, is that if a large 
number of modifications are to be made, computation time 
and computational errors can become significant. 
 
The approach taken here is to solve the homogeneous form 
of equation (18) directly. This is still a relatively small ei-
genvalue problem (# of modes by # of modes) which only 
needs to be solved once for as many modifications as de-
sired. 
 
A Typical Application 
 
SDM is very useful for investigating various mounting con-
figurations of structures. In cases like these, the rigid body 
modes are used along with the free-free flexible body modes 
of the structure to model its free body dynamics. Then the 
structure is “mounted” by connecting it to ground (or per-
haps some other elastic structure) with springs and dampers. 
 
In the example considered here, a flat aluminum plate was 
tested to obtain its free-free flexible body modes, and its 
rigid body modes were synthesized and added to the flexible 
modes to form the unmodified structural model. 
 
Assuming that only motion in the vertical (Z) direction is of 
interest, then only three of the six rigid body modes are 
needed; linear motion in the Z-direction, rotation about the 
X-axis, and rotation about the Y-axis. 
 

The frequencies and damping of the modal model, which 
were used as input to SDM, are listed below. Typical mode 
shapes for several of the flexible modes are also shown be-
low. 
 

Modes of the Unmodified Structure 

Mode 
No. 

Frequency 
(Hz) 

Damping 
(%) Description 

1 0.00 0.00 Rigid Z Translation 
2 0.00 0.00 Rigid X Rotation 
3 0.00 0.00 Rigid Y Rotation 
4 522.47 0.51 First Bending - X 
5 570.46 0.33 First Torsion 
6 1257.18 0.30 Second Torsion 
7 1414.14 0.37 Second Bending - X 
8 1827.70 0.34 First Bending - Y 
9 2156.90 0.27 2nd Order Bending 

 
S2DM and SDM were first compared by simulating the 
mounting of the flat plate with springs of stiffness=1000 
LBF/inch between its four corners and ground. In this case, 
SDM solved four scalar eigenvalue problems in sequence 
(one for each spring addition), while S2DM found the an-
swer in one eigensolution. The results are shown below. 
 

Modes of the Mounted Structure 
 SDM  S2DM 

Mode 
No. Freq (Hz) Damp 

(%) 
 

Freq (Hz) Damp 
(%) 

1 56.49 0.00  55.99 0 00 
2 92.36 0.00  92.82 0.00 
3 96.02 0.00  97.12 0.00 
4 533.96 0.50  533.81 0.50 
5 582.35 0.32  582.18 0.32 
6 1267.41 0.30  1276.46 0.30 
7 1414.37 0.36  1414.37 0.37 
8 1831.38 0.34  1831.36 0.34 
9 2160.45 0.27  2160.44 0.27 
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Modes of the Unmodified Structure. 
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Comparison of Test and Finite Element Analysis 
 
Next, a finite element model of the flat plate was built to 
compare an eigensolution in physical space with that found 
by S2DM in modal space. 
 
The plate was modeled using FEDESK, a finite element 
code which runs on the 9000 Series Hewlett Packard desk-
top computers. A plot of the finite element model is show 
below. 
 

 
 
First, the free-free flexible body modes were found from the 
finite element model. The frequencies of these modes are 
compared with those of the test modes in the table below. 
 
 

Elastic Modes of the Unmodified Structure 
 Test  FEM 

Mode 
No. Freq (Hz) Damp 

(%) 
 

Freq (Hz) Damp 
(%) 

1 522.47 0.51  519.50 0.00 
2 570.46 0.33  592.16 0.00 
3 1257.18 0.30  1278.29 0.00 
4 1414.14 0.37  1358.95 0.00 
5 1827.70 0.34  1663.98 0.00 
6 2156.90 0.27  2001.62 0.00 

 
To compare S2DM and FEDESK, the elastic FEM modes, 
together with the three rigid body modes, were used as input 
to S2DM to simulate the mounting of the plate to ground 
with four springs at its corners. Then, this new set of bound-
ary conditions, (mounting on the plate on four springs), was 
added to the finite element model, and a new eigensolution 
was generated using FEDESK. The two sets of results are 
shown below. 

 

Modes of the Mounted Structure 
 S2DM  FEM 

Mode 
No. Freq (Hz) Damp 

(%)  Freq (Hz) Damp 
(%) 

1 56.14 0.00  55.99 0.00 
2 92.89 0.00  92.74 0.00 
3 96.86 0.00  96.73 0.00 
4 529.33 0.00  529.27 0.00 
5 609.12 0.00  608.99 0.00 
6 1287.80 0.00  1287.76 0.00 
7 1360.38 0.00  1360.38 0.00 
8 1667.22 0.00  1667.20 0.00 
9 2008.50 0.00  2008.48 0.00 

 
CONCLUSIONS 
 
The purpose of the paper was to point out the advantages of 
implementing the SDM method in a different manner than 
has been done in the past. The SDM method is attractive as 
an analysis tool because it only requires modal data, which 
can be derived either from analysis or test, to describe the 
dynamics of the structure, and it is computationally very 
efficient. The method proposed here (S2DM) is not as effi-
cient as the original method if only one modification is 
done, but its comparative efficiency increases rapidly when 
a large number of scalar modifications must be modeled on 
a structure. 
 
In the simple example in this paper, only four stiffness mod-
ifications were performed in the mounting of a flat plate 
structure to ground, but even in this case S2DM found the 
solution more rapidly than either SDM or the finite element 
method. All three methods were run on the same computer 
with the following results. 
 
Method Time to Solve 4 Spring Mounting Problem 
SDM 43 seconds 
S2DM 32 seconds 
FEM 7 minutes, 45 seconds 
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