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ABSTRACT 

Experimental modal analysis has grown steadily in popu-
larity since the advent of the digital FFT spectrum analyzer 
in the early 1970’s.  Today, impact testing (or bump testing) 
has become widespread as a fast and economical means of 
finding the modes of vibration of a machine or structure. 

In this paper, we review all of the main topics associated 
with experimental modal analysis (or modal testing), in-
cluding making FRF measurements with a FFT analyzer, 
modal excitation techniques, and modal parameter estima-
tion from a set of FRFs (curve fitting). 

INTRODUCTION 

Modes are used as a simple and efficient means of character-
izing resonant vibration.  The majority of structures can be 
made to resonate.  That is, under the proper conditions, a 
structure can be made to vibrate with excessive, sustained, 
oscillatory motion. 

Resonant vibration is caused by an interaction between the 
inertial and elastic properties of the materials within a struc-
ture.  Resonant vibration is often the cause of, or at least a 
contributing factor to many of the vibration related problems 
that occur in structures and operating machinery. 

To better understand any structural vibration problem, the 
resonances of a structure need to be identified and quantified.  
A common way of doing this is to define the structure’s 
modal parameters. 

TWO TYPES OF VIBRATION 

All vibration is a combination of both forced and resonant 
vibration.  Forced vibration can be due to, 

• Internally generated forces. 
• Unbalances. 
• External loads. 
• Ambient excitation. 

Resonant vibration occurs when one or more of the reso-
nances or natural modes of vibration of a machine or struc-
ture is excited.  Resonant vibration typically amplifies the 
vibration response far beyond the level deflection, stress, 
and strain caused by static loading. 

What are Modes? 
Modes (or resonances) are inherent properties of a structure.  
Resonances are determined by the material properties (mass, 
stiffness, and damping properties), and boundary conditions 
of the structure.  Each mode is defined by a natural (modal 
or resonant) frequency, modal damping, and a mode shape.  
If either the material properties or the boundary conditions of 
a structure change, its modes will change.  For instance, if 
mass is added to a vertical pump, it will vibrate differently 
because its modes have changed. 

At or near the natural frequency of a mode, the overall vibra-
tion shape (operating deflection shape) of a machine or struc-
ture will tend to be dominated by the mode shape of the res-
onance. 

What is an Operating Deflection Shape? 
An operating deflection shape (ODS) is defined as any 
forced motion of two or more points on a structure.  Specify-
ing the motion of two or more points defines a shape.  Stated 
differently, a shape is the motion of one point relative to all 
others.  Motion is a vector quantity, which means that it has 
both a location and a direction associated with it.  Motion at 
a point in a direction is also called a Degree Of Freedom, or 
DOF. 

“All experimental modal parameters are obtained from 
measured ODS’s.” 

That is, experimental modal parameters are obtained by arti-
ficially exciting a machine or structure, measuring its operat-
ing deflection shapes (motion at two or more DOFs), and 
post-processing the vibration data. 

 
Figure 1. Frequency Domain ODS From a Set of FRFs 
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Figure 1 shows an ODS being displayed from a set of FRF 
measurements with the cursor located at a resonance peak.  
In this case, the ODS is being dominated by a mode and 
therefore is a close approximation to the mode shape. 

Two Kinds of Modes 
Modes are further characterized as either rigid body or flexi-
ble body modes.  All structures can have up to six rigid body 
modes, three translational modes and three rotational modes.  
If the structure merely bounces on some soft springs, its mo-
tion approximates a rigid body mode. 

 
Figure 2. Flexible Body Modes. 

Many vibration problems are caused, or at least amplified by 
the excitation of one or more flexible body modes.  Figure 2 
shows some of the common fundamental (low frequency) 
modes of a plate.  The fundamental modes are given names 
like those shown in Figure 2.  The higher frequency mode 
shapes are usually more complex in appearance, and there-
fore don’t have common names. 

FRF MEASUREMENTS 

The Frequency Response Function (FRF) is a fundamental 
measurement that isolates the inherent dynamic properties of 
a mechanical structure.  Experimental modal parameters 
(frequency, damping, and mode shape) are also obtained 
from a set of FRF measurements. 

The FRF describes the input-output relationship between two 
points on a structure as a function of frequency, as shown in 
Figure 3.  Since both force and motion are vector quantities, 
they have directions associated with them.  Therefore, an 
FRF is actually defined between a single input DOF (point & 
direction), and a single output DOF. 

An FRF is a measure of how much displacement, velocity, 
or acceleration response a structure has at an output DOF, 
per unit of excitation force at an input DOF. 

Figure 3 also indicates that an FRF is defined as the ratio of 
the Fourier transform of an output response ( X(ω) ) divid-
ed by the Fourier transform of the input force ( F(ω) ) that 
caused the output. 

 
Figure 3. Block Diagram of an FRF. 

Depending on whether the response motion is measured as 
displacement, velocity, or acceleration, the FRF and its in-
verse can have a variety of names, 

• Compliance  (displacement / force) 
• Mobility  (velocity / force) 
• Inertance or Receptance  (acceleration / force) 
• Dynamic Stiffness  (1 / Compliance) 
• Impedance  (1 / Mobility) 
• Dynamic Mass  (1 / Inertance) 

An FRF is a complex valued function of frequency that is 
displayed in various formats, as shown in Figure 4. 

 
Figure 4.  Alternate Formats of the FRF. 

VIBRATION IS EASIER TO UNDERSTAND IN 
TERMS OF MODES 

Figure 5 points out another reason why vibration is easier to 
understand in terms of modes of vibration.  It is a plot of the 
Log Magnitude of an FRF measurement (the solid curve), 
but several resonance curves are also plotted as dotted lines 
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below the FRF magnitude.  Each of these resonance curves is 
the structural response due to a single mode of vibration. 

The overall structural response (the solid curve) is in fact, the 
summation of resonance curves.  In other words, the overall 
response of a structure at any frequency is a summation of 
responses due to each of its modes.  It is also evident that 
close to the frequency of one of the resonance peaks, the 
response of one mode will dominate the frequency response. 

 
Figure 5. Response as Summation of Modal Responses. 

WHY ARE MODES DANGEROUS? 

Figure 6 shows why modes cause structures to act as “me-
chanical amplifiers”.  At certain natural frequencies of the 
structure (its modal frequencies), a small amount of input 
force can cause a very large response.  This is clearly evident 
from the narrow peaks in the FRF.  (When a peak is very 
narrow and high in value, it is said to be a high Q reso-
nance.) 

If the structure is excited at or near one of the peak frequen-
cies, the response of the structure per unit of input force will 
be large.  On the other hand, if the structure is excited at or 
near one of the anti-resonances (zeros or inverted peaks), the 
structural response will be very small per unit of input force. 

 
Figure 6. FRF With High Q Resonance Peaks. 

TESTING REAL STRUCTURES 

Real continuous structures have an infinite number of DOFs, 
and an infinite number of modes.  From a testing point of 
view, a real structure can be sampled spatially at as many 

DOFs as we like.  There is no limit to the number of unique 
DOFs between which FRF measurements can be made. 

However, because of time and cost constraints, we only 
measure a small subset of the FRFs that could be measured 
on a structure.  This is depicted in Figure 7. 

Yet, from this small subset of FRFs, we can accurately de-
fine the modes that are within the frequency range of the 
measurements.  Of course, the more we spatially sample the 
surface of the structure by taking more measurements, the 
more definition we will give to its mode shapes. 

 
Figure 7. Measuring FRFs on a Structure 

FRF CALCULATION 

Although the FRF was previously defined as a ratio of the 
Fourier transforms of an output and input signal, is it actually 
computed differently in all modern FFT analyzers.  This is 
done to remove random noise and non-linearity’s (distor-
tion) from the FRF estimates. 

Tri-Spectrum Averaging 
The measurement capability of all multi-channel FFT ana-
lyzers is built around a tri-spectrum averaging loop, as 
shown in Figure 8.  This loop assumes that two or more time 
domain signals are simultaneously sampled.  Three spectral 
estimates, an Auto Power Spectrum (APS) for each channel, 
and the Cross Power Spectrum (XPS) between the two chan-
nels, are calculated in the tri-spectrum averaging loop.  After 
the loop has completed, a variety of other cross channel 
measurements (including the FRF), are calculated from these 
three basic spectral estimates. 

In a multi-channel analyzer, tri-spectrum averaging can be 
applied to as many signal pairs as desired.  Tri-spectrum av-
eraging removes random noise and randomly excited non-
linearity’s from the XPS of each signal pair.  This low noise 
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measurement of the effective linear vibration of a structure 
is particularly useful for experimental modal analysis. 

 
Figure 8. Tri-Spectrum Averaging Loop 

Following tri-spectrum averaging, FRFs can be calculated in 
several different ways. 

Noise on the Output (H1) 
This FRF estimate assumes that random noise and distortion 
are summing into the output, but not the input of the struc-
ture and measurement system.  In this case, the FRF is calcu-
lated as, 

APSInput
XPSH1 =  

where XPS denotes the cross power spectrum estimate be-
tween the input and output signals, and Input APS denotes 
the auto power spectrum of the input signal. 

It can be shown that H1 is a least squared error estimate of 
the FRF when extraneous noise and randomly excited non-
linearity’s are modeled as Gaussian noise added to the out-
put [2]. 

Noise on the Input (H2) 
This FRF estimator assumes that random noise and distortion 
are summing into the input, but not the output of the struc-
ture and measurement system.  For this model, the FRF is 
calculated as, 

XPS
APSOutputH2 =  

Likewise, it can be shown that H2 is a least squared error 
estimate for the FRF when extraneous noise and randomly 

excited non-linearity’s are modeled as Gaussian noise added 
to the input. [2]. 

Noise on the Input & Output (HV) 
This FRF estimator assumes that random noise and distortion 
are summing into both the input but and output of the sys-
tem.  The calculation of HV requires more steps, and is de-
tailed in [2]. 

THE FRF MATRIX MODEL 

Structural dynamics measurement involves measuring ele-
ments of an FRF matrix model for the structure, as shown in 
Figure 7.  This model represents the dynamics of the struc-
ture between all pairs of input and output DOFs. 

The FRF matrix model is a frequency domain representation 
of a structure’s linear dynamics, where linear spectra (FFTs) 
of multiple inputs are multiplied by elements of the FRF ma-
trix to yield linear spectra (FFTs) of multiple outputs. 

FRF matrix columns correspond to inputs, and rows corre-
spond to outputs.  Each input and output corresponds to a 
measurement DOF of the test structure. 

Modal Testing 
In modal testing, FRF measurements are usually made under 
controlled conditions, where the test structure is artificially 
excited by using either an impact hammer, or one or more 
shakers driven by broadband signals.  A multi-channel FFT 
analyzer is then used to make FRF measurements between 
input and output DOF pairs on the test structure. 

Measuring FRF Matrix Rows or Columns 
Modal testing requires that FRFs be measured from at least 
one row or column of the FRF matrix.  Modal frequency & 
damping are global properties of a structure, and can be es-
timated from any or all of the FRFs in a row or column of the 
FRF matrix.  On the other hand, each mode shape is obtained 
by assembling together FRF numerator terms (called resi-
dues) from at least one row or column of the FRF matrix. 

Impact Testing 
When the output is fixed and FRFs are measured for multiple 
inputs, this corresponds to measuring elements from a single 
row of the FRF matrix.  This is typical of a roving hammer 
impact test. 

Shaker Testing 
When the input is fixed and FRFs are measured for multiple 
outputs, this corresponds to measuring elements from a sin-
gle column of the FRF matrix.  This is typical of a shaker 
test. 

Single Reference (or SIMO) Testing 
The most common type of modal testing is done with either a 
single fixed input or a single fixed output.  A roving hammer 
impact test using a single fixed motion transducer is a com-
mon example of single reference testing.  The single fixed 
output is called the reference in this case. 
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When a single fixed input (such as a shaker) is used, this is 
called SIMO (Single Input Multiple Output) testing.  In this 
case, the single fixed input is called the reference. 

Multiple Reference (or MIMO) Testing 
When two or more fixed inputs are used, and FRFs are cal-
culated between each of the inputs and multiple outputs, then 
FRFs from multiple columns of the FRF matrix are obtained.  
This is called Multiple Reference or MIMO (Multiple Input 
Multiple Output) testing.  In this case, the inputs are the ref-
erences. 

Likewise, when two or more fixed outputs are used, and 
FRFs are calculated between each output and multiple inputs, 
this is also multiple reference testing, and the outputs are the 
references. 

Multi-reference testing is done for the following reasons, 

• The structure cannot be adequately excited from one 
reference. 

• All modes of interest cannot be excited from one refer-
ence. 

• The structure has repeated roots, modes that are so 
closely coupled that more than one reference is needed 
to identify them. 

EXCITING MODES WITH IMPACT TESTING 

With the ability to compute FRF measurements in an FFT 
analyzer, impact testing was developed during the late 
1970’s, and has become the most popular modal testing 
method used today.  Impact testing is a fast, convenient, and 
low cost way of finding the modes of machines and struc-
tures. 

 
Figure 9. Impact Testing. 

Impact testing is depicted in Figure 9.  The following equip-
ment is required to perform an impact test, 
1. An impact hammer with a load cell attached to its head 

to measure the input force. 

2. An accelerometer to measure the response acceleration 
at a fixed point & direction. 

3. A 2 or 4 channel FFT analyzer to compute FRFs. 
4. Post-processing modal software for identifying modal 

parameters and displaying the mode shapes in anima-
tion. 

A wide variety of structures and machines can be impact 
tested.  Of course, different sized hammers are required to 
provide the appropriate impact force, depending on the size 
of the structure; small hammers for small structures, large 
hammers for large structures.  Realistic signals from a typical 
impact test are shown in Figure 10. 

 
Figure 10A. Impact Force and Response Signals 

 
Figure 10B. Impact APS and FRF. 

Roving Hammer Test 
A roving hammer test is the most common type of impact 
test.  In this test, the accelerometer is fixed at a single DOF, 
and the structure is impacted at as many DOFs as desired to 
define the mode shapes of the structure.  Using a 2-channel 
FFT analyzer, FRFs are computed one at a time, between 
each impact DOF and the fixed response DOF. 

Roving Tri-axial Accelerometer Test 
The only drawback to a roving hammer test is that all of the 
points on most structures cannot be impacted in all three 
directions, so 3D motion cannot be measured at all points.  
When 3D motion at each test point is desired in the resulting 
mode shapes, a roving tri-axial accelerometer is used and the 
structure is impacted at a fixed DOF with the hammer.  Since 
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the tri-axial accelerometer must be simultaneously sampled 
together with the force data, a 4-channel FFT analyzer is 
required instead of a 2-channel analyzer. 

Impact Testing Requirements 
Even though impact testing is fast and convenient, there are 
several important considerations that must be taken into ac-
count in order to obtain accurate results.  They include, pre-
trigger delay, force and exponential windowing, and ac-
cept/reject capability 

Pre-Trigger Delay 
Because the impulse signal exists for such a short period of 
time, it is important to capture all of it in the sampling win-
dow of the FFT analyzer.  To insure that the entire signal is 
captured, the analyzer must be able to capture the impulse 
and impulse response signals prior to the occurrence of the 
impulse.  In other words, the analyzer must begin sampling 
data before the trigger point occurs, which is usually set to a 
small percentage of the peak value of the impulse.  This is 
called a pre-trigger delay. 

Force & Exponential Windows 
Two common time domain windows that are used in impact 
testing are the force and exponential windows.  These win-
dows are applied to the signals after they are sampled, but 
before the FFT is applied to them in the analyzer. 

The force window is used to remove noise from the impulse 
(force) signal.  Ideally, an impulse signal is non-zero for a 
small portion of the sampling window, and zero for the re-
mainder of the window time period.  Any non-zero data fol-
lowing the impulse signal in the sampling window is as-
sumed to be measurement noise.  The force window pre-
serves the samples in the vicinity of the impulse, and re-
moves the noise from all of the other samples in the force 
signal by making them zero. 

The exponential window is applied to the impulse response 
signal.  The exponential window is used to reduce leakage 
in the spectrum of the response. 

What Is Leakage? 
The FFT assumes that the signal to be transforming is peri-
odic in the transform window.  (The transform window is 
the samples of data used by the FFT).  To be periodic in the 
transform window, the waveform must have no discontinui-
ties at its beginning or end, if it were repeated outside the 
window.  Signals that are always periodic in the transform 
window are, 

1. Signals that are completely contained within the trans-
form window. 

2. Cyclic signals that complete an integer number of cycles 
within the transform window. 

If a time signal is not periodic in the transform window, 
when it is transformed to the frequency domain, a smearing 
of its spectrum will occur.  This is called leakage.  Leakage 
distorts the spectrum and makes it inaccurate. 

Therefore, if the response signal in an impact test decays to 
zero (or near zero) before the end of the sampling window, 
there will be no leakage, and no special windowing is re-
quired. 

On the other hand, if the response does not decay to zero 
before the end of the sampling window, an exponential win-
dow must be used to reduce the leakage effects in the re-
sponse spectrum.  The exponential window adds artificial 
damping to all of the modes of the structure in a known 
manner.  This artificial damping can be subtracted from the 
modal damping estimates after curve fitting.  But more im-
portantly, a properly applied exponential window will cause 
the impulse response to be completely contained within the 
sampling window, thus leakage will be reduced to a mini-
mum in its spectrum. 

Accept/Reject 
Because accurate impact testing results depend on the skill of 
the one doing the impacting, FRF measurements should be 
made with spectrum averaging, a standard capability in all 
modern FFT analyzers.  FRFs should be measured using 3 to 
5 impacts per measurement. 

Since one or two of the impacts during the measurement pro-
cess may be bad hits, an FFT analyzer designed for impact 
testing should have the ability to accept or reject the result of 
each impact.  An accept/reject capability saves a lot of time 
during impact testing since you don’t have to restart the 
measurement process after each bad hit. 

SHAKER MEASUREMENTS 

Not all structures can be impact tested, however.  For in-
stance, structure with delicate surfaces cannot be impact 
tested.  Or because of its limited frequency range or low 
energy density over a wide spectrum, the impacting force is 
not be sufficient to adequately excite the modes of interest. 

When impact testing cannot be used, FRF measurements 
must be made by providing artificial excitation with one or 
more shakers, attached to the structure.  Common types of 
shakers are electro-dynamic and hydraulic shakers.  A typical 
shaker test is depicted in Figure 11. 

A shaker is usually attached to the structure using a stinger 
(long slender rod), so that the shaker will only impart force 
to the structure along the axis of the stinger, the axis of force 
measurement.  A load cell is then attached between the struc-
ture and the stinger to measure the excitation force. 

At least a 2-channel FFT analyzer and a single axis accel-
erometer are required to make FRF measurements using a 
shaker.  If an analyzer with 4 or more channels is used, then 
a tri-axial accelerometer can be used and 3D motion of the 
structure measured at each test point. 
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Figure 11.  Shaker Test Setup. 

In a SIMO test, one shaker is used and the shaker is the 
(fixed) reference.  In a MIMO test, multiple shakers are used, 
and the shakers are the multiple references.  When multiple 
shakers are used, care must be taken to insure that the shaker 
signals are not completely correlated (the same signal).  Fur-
thermore, special matrix processing software is required to 
calculate the FRFs from the multiple input APSs and XPSs 
resulting from a MIMO test. 

Broad Band Excitation Signals 
A variety of broadband excitation signals have been devel-
oped for making shaker measurements with FFT analyzers.  
These signals include, 

• Transient 
• True Random 
• Pseudo Random 
• Burst Random 
• Fast Sine Sweep (Chirp) 
• Burst Chirp 

Since the FFT provides a spectrum over a broad band of fre-
quencies, using a broadband excitation signal makes the 
measurement of broadband spectral measurements much 
faster than using a stepped or slowly sweeping sine wave. 

Transient Signals 
Using a transient signal in shaker testing provides the same 
leakage free measurements as impact testing, but with more 
controllability over the test.  Application of the force is more 
repeatable than impacting with a hand held hammer.  How-
ever, this one advantage is usually outweighed by the disad-
vantages of using an impulsive force, when compared to the 
other broadband signals. 

True Random 
Probably the most popular excitation signal used for shaker 
testing with an FFT analyzer is the true random signal.  
When used in combination with spectrum averaging, random 
excitation randomly excites the non-linearity’s in a structure, 

which are then removed by spectrum averaging.  Obtaining a 
set of noise free FRF estimates with no distortion in them is 
very important for obtaining accurate modal parameters. 

A true random signal is synthesized with a random number 
generator, and is an unending (non-repeating) random se-
quence.  The main disadvantage of a true random signal is 
that it is always non-periodic in the sampling window.  
Therefore, a special time domain window (a Hanning win-
dow or one like it), must always be used with true random 
testing to minimize leakage.  Typical true random signals are 
shown in Figure 12. 

 
Figure 12. True Random Excitation (Time waveform, APS, 

FRF & Coherence). 

Page 7 of 12 



CSI Reliability Week, Orlando, FL  October, 1999 

Pseudo Random 
A pseudo random signal is specially synthesized within an 
FFT analyzer to coincide with the FRF measurement window 
parameters.  A typical pseudo random signal starts as a uni-
form (or shaped) magnitude and random phase signal, syn-
thesized over the same frequency range and samples as the 
intended FRF measurement.  It is then inverse FFT’d to ob-
tain a random time domain signal, which is subsequently 
output through a digital-to-analog converter (DAC) as the 
shaker excitation signal. 

During the measurement process, the measured force and 
response signals are sampled over the same sampling time 
window as the excitation signal.  Since the excitation signal 
is completely contained in the sampling window, this insures 
that the acquired signals are periodic in the sampling win-
dow.  Therefore, the acquired signals are leakage free. 

However, pseudo random excitation doesn’t excite non-
linearity’s differently between spectrum averages.  Therefore 
spectrum averaging of pseudo random signals will not re-
move non-linearity’s from FRF measurements. 

 
Figure 13. Burst Random Excitation (Time waveform, APS, 

FRF & Coherence). 

Burst Random 
Burst random excitation has the combined advantages of 
both pure random and pseudo random testing.  That is, its 
signals are leakage free and when using with spectrum aver-
aging, will remove non-linearity’s from the FRFs. 

In burst random testing, either a true random or time varying 
pseudo random signal can be used, but it is turned off prior 
to the end of the sampling window time period.  This is done 
in order to allow the structural response to decay within the 
sampling window.  This insures that both the excitation and 
response signals are completely contained within the sam-
pling window.  Hence, they are periodic in the window and 
leakage free. 

Figure 13 shows a typical burst random signal.  The random 
signal generator must be turned off early enough to allow the 
structural response to decay to zero (or nearly zero) before 
the end of the sampling window.  The length of the decay 
period depends on the damping in the test structure.  There-
fore, a burst random test must be setup interactively on the 
FFT analyzer, after observing the free decay of the structural 
response following the removal of random excitation. 

Chirp & Burst Chirp 
A swept sine excitation signal can also be synthesized in an 
FFT analyzer to coincide with the parameters of the sampling 
window, in a manner similar to the way a pseudo random 
signal is synthesized.  Since the sine waves must sweep from 
the lowest to the highest frequency in the spectrum, over the 
relatively short sampling window time period, this fast sine 
sweep often makes the test equipment sound like a bird 
chirping, hence the name chirp signal. 

A burst chirp signal is the same as a chirp, except that it is 
turned off prior to the end of the sampling window, just like 
burst random.  This is done to insure that the measured sig-
nals are periodic in the window.  A typical burst chirp signal 
is shown in Figure 14. 

The advantage of burst chirp over chirp is that the structure 
has returned to rest before the next average of data is taken.  
This insures that the measured response is only caused by the 
measured excitation, an important requirement for FRF 
measurement. 
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Figure 14. Burst Chirp Excitation (Time waveform, APS, 

FRF & Coherence) 

Comparison of Excitation Signals 
Ideally, all of the shaker signals that are leakage free (period-
ic in the window) should yield the same results.  Figure 15 
shows an overlay of two FRF magnitudes, one measured 
with a burst random test and the other with a burst chirp 
test.  The two FRFs match very well at low frequencies, but 
show some disparity at high frequencies.  This could possi-
bly be due to a small amount of non-linear behavior in the 
structure, which burst chirp signal processing cannot remove 
through averaging. 

HOW ARE MODAL PARAMETERS OBTAINED? 

Figure 16 shows the different ways in which modal parame-
ters can be obtained, both analytically and experimentally.  A 
growing amount of finite element modeling, with extraction 
of modal parameters from the finite element model, is being 
done in an effort to understand and solve structural dynamics 
problems.  Experimental modal analysis is also done for this 
same purpose. 

 
Figure 15. Burst Random Versus Burst Chirp FRF. 

The majority of modern experimental modal analysis relies 
upon the application of a modal parameter estimation (curve 
fitting) technique to a set of FRF measurements.  As indicat-
ed in Figure 16, the FRFs can also be inverse FFT’d and 
curve fitting techniques applied to their equivalent Impulse 
Response Functions (IRFs). 

 
Figure 16. Sources of Modal Parameters. 

MODAL PARAMETERS FROM CURVE FITTING 

Modal parameters are most commonly identified by curve 
fitting a set of FRFs.  (They can also be identified by curve 
fitting an equivalent set of Impulse Responses, or IRFs).  In 
general, curve fitting is a process of matching a mathematical 
expression to a set of empirical data points.  This is done by 
minimizing the squared error (or squared difference) be-
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tween the analytical function and the measured data.  An 
example of FRF curve fitting is shown in Figure 17. 

 
Figure 17.  A Curve Fitting Example. 

CURVE FITTING METHODS 

All curve fitting methods fall into one of the following cate-
gories, 

• Local SDOF 
• Local MDOF 
• Global 
• Multi-Reference (Poly Reference) 

In general, the methods are listed in order of increasing com-
plexity.  SDOF is short for a Single Degree Of Freedom, or 
single mode method.  Similarly, MDOF is short for a Multi-
ple Degree Of Freedom, or multiple mode method. 

SDOF methods estimate modal parameters one mode at a 
time.  MDOF, Global, and Multi-Reference methods can 
simultaneously estimate modal parameters for two or more 
modes at a time. 

Local methods are applied to one FRF at a time.  Global and 
Multi-Reference methods are applied to an entire set of 
FRFs at once. 

Local SDOF methods are the easiest to use, and should be 
used whenever possible.  SDOF methods can be applied to 
most FRF data sets with light modal density (coupling), as 
depicted in Figure 19.  MDOF methods must be used in cas-
es of high modal density. 

Global methods work much better than MDOF methods for 
cases with local modes.  Multi-Reference methods can find 
repeated roots (very closely coupled modes) where the other 
methods cannot. 

 
Figure 19.  Light Versus Heavy Modal Density (Coupling). 

Local SDOF Methods 
Figure 20 depicts the three most commonly used curve-
fitting methods for obtaining modal parameters.  These are 
referred to as SDOF (single degree of freedom, or single 
mode) methods.  Even though they don’t look like curve fit-
ting methods (in the sense of fitting a curve to empirical da-
ta), all three of these methods are based on applying an ana-
lytical expression for the FRF to measured data [3]. 

Modal Frequency as Peak Frequency 
The frequency of a resonance peak in the FRF is used as the 
modal frequency.  This peak frequency, which is also de-
pendent on the frequency resolution of the measurements, is 
not exactly equal to the modal frequency but is a close ap-
proximation, especially for lightly damped structures.  The 
resonance peak should appear at the same frequency in al-
most every FRF measurement.  It won’t appear in those 
measurements corresponding to nodal lines (zero magnitude) 
of the mode shape. 

 
Figure 20.  Curve Fitting FRF Measurements. 
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Modal Damping as Peak Width 
The width of the resonance peak is a measure of modal 
damping.  The resonance peak width should also be the same 
for all FRF measurements, meaning that modal damping is 
the same in every FRF measurement.  The width is actually 
measured at the so-called half power point, and is approxi-
mately equal to twice the modal damping (in Hz). 

Mode Shape From Quadrature Peaks 
From (displacement/force) or (acceleration/force) FRFs, the 
peak values of the imaginary part of the FRFs are taken as 
components of the mode shape.  This is called the Quadra-
ture method of curve fitting.  From (velocity/force) FRFs, 
the peak values of the real part are used as mode shape 
components. 

Hence, using the simplest Local SDOF curve fitting meth-
ods, all three modal parameters (frequency, damping, and 
mode shape) can be extracted directly from a set of FRF 
measurements. 

Local MDOF Methods 
The Complex Exponential and the Rational Fraction Poly-
nomial methods are two of the most popular Local MDOF 
curve fitting methods. 

Complex Exponential (CE) 
This algorithm curve fits and analytical expression for a 
structural impulse response to experimental impulse response 
data.  A set of impulse response data is normally obtained by 
applying the Inverse FFT to a set of FRF measurements, as 
shown in Figure 16. 

Figure 21 shows the analytical expression used by Complex 
Exponential curve fitting.  Also pointed out in Figure 20 is 
the leakage (wrap around error) caused by the inverse FFT, 
which distorts the impulse response data.  This portion of the 
data cannot be used because of this error. 

 
Figure 21.  CE Curve Fitting. 

Rational Fraction Polynomial (RFP) 
This method applies the rational fraction polynomial expres-
sion shown in Figure 22 directly to an FRF measurement.  Its 
advantage is that it can be applied over any frequency range 
of data, and particularly in the vicinity of a resonance peak. 

 
Figure 22.  Alternate Curve Fitting Forms of the FRF. 

As shown in Figure 23, not only can the RFP method be used 
to estimate modal parameters, but it also yields the numera-
tor & denominator polynomial coefficients, as well as the 
poles & zeros of the FRF. 

 
Figure 23. RFP Solution Method. 

Global and Multi-Reference Methods 
Both the CE and RFP algorithms have been implemented as 
Global and Multi-Reference methods also. The details of 
these methods are given in references [4] through [6]. 
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CONCLUSIONS 

Modern experimental modal analysis techniques have been 
reviewed in this paper.  The three main topics pertaining to 
modal testing; FRF measurement techniques, excitation 
techniques, and modal parameter estimation (curve fitting) 
methods were covered. 

FRF based modal testing started in the early 1970’s with the 
commercial availability of the digital FFT analyzer, and has 
grown steadily in popularity since then.  The modern modal 
testing techniques presented here are just a brief summary of 
the accumulation of the past 30 years of progress. 
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