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INTRODUCTION 
Once a set of modal data has been measured for a vibrating 
structure, it is possible to compute the full mass, stiffness 
and damping matrices for the structure by using formulas 
derived from the relationship between the time domain dif-
ferential equations of motion and the transfer function ma-
trix model of the structure. 

First, the equations for calculating the full mass, stiffness 
and damping matrices from modal data are derived.  This 
deviation was first presented in [1].  However, these equa-
tions are difficult to solve because the first step of their solu-
tion requires matrix inversion of the flexibility matrix to 
obtain the stiffness matrix.  Not only does matrix inversion 
amplify errors, but the number of linearly independent mode 
shapes required to yield a non-singular flexibility matrix is 
beyond the scope of most experimental modal data sets.  
Further assumptions regarding the modal parameters can 
simplify the calculations though. 

Next it is shown that for lightly damped structures, where 
the mode vectors are "almost" real valued (called normal 
modes), modal mass, stiffness, and damping can be defined 
directly from the mass, stiffness and damping formulas de-
rived for the complex modal model.  These assumptions 
greatly simply the equations for calculating mass, stiffness, 
and damping matrices, but a matrix inversion (in this case 
the mode shape matrix) is still required.  Again, a large set 
of linearly independent mode shapes is still required. 

Finally, it is shown that if the modal vectors can also be 
assumed to be orthogonal to one another (an assumption 
that can only be approximated with real world data), then 
the full mass, stiffness and damping matrices can be com-
puted from modal data without any matrix inversions.   

Time Domain Model 

These results apply to an vibrating machine or structure, the 
dynamics of which can be adequately described by n-linear 
differential equations of motion, 

)}t(f{)}t(x]{K[)}t(x]{C[)}t(x]{M[ =++   (1) 

where, 

=]M[ (n by n) mass matrix. 
=]C[  (n by n) damping matrix. 
=]K[ (n by n) stiffness matrix. 
=)}t(x{  n-dimensional acceleration vector. 
=)}t(x{  n-dimensional velocity vector. 
=)}t(x{  n-dimensional displacement vector. 
=)}t(f{  n-dimensional external force vector. 

This set of time domain differential equations describes the 
dynamics between n-discrete degrees-of-freedom (DOFs) of 
the structure.  

These equations can be written between as many DOFs on a 
structure as necessary to adequately describe its dynamic 
behavior. 

Frequency Domain Model 

Alternatively, the dynamics of a machine or structure be-
tween any pair of DOFs can be equivalently described in the 
frequency domain by a transfer function.  A transfer func-
tion matrix model describes the dynamics between n-DOFs 
of the structure, and contains transfer functions between all 
combinations of DOF pairs, 

)}s(F)]{s(H[)}s(X{ =  (2) 

where, 

=s  Laplace variable (complex frequency). 
=)]s(H[ (n by n) transfer function matrix. 
=)}s(X{  Laplace transform of displacement n-vector. 
=)}s(F{  Laplace transform of external force n-vector. 

From an experimental point of view, not only can these 
equations can be written between as many DOFs on a struc-
ture as necessary to adequately describe its dynamic behav-
ior, but any element of the transfer function matrix can also 
be measured from a real structure.  Values of the transfer 
function along the ωj  -axis in the s-plane, called frequency 
response functions (FRFs), are actually measured. 
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Transfer Function in Terms of Modes 

The (n by n) transfer function matrix can also be written in 
terms of modal parameters as, 
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where, 

=m  number of modes of vibration. 
=]r[ k  (n by n) residue matrix for the thk  mode. 

=kp  =ω+σ− kk j  pole location for the thk mode. 

=σk  damping coefficient of the thk  mode. 

=ωk  damped natural frequency of the thk  mode. 

=}u{ k  n-dimensional complex mode shape vector for 

the thk  mode. 
=kA a scaling constant for the thk  mode. 

The following assumptions were made in order to derive 
equations (3) & (4). 

1. Linearity:  The structural dynamics are linear and are 
adequately described by either equation (1) or (2). 

2. Maxwell's Reciprocity:  The matrices in equations (1) or 
(2) are assumed to be symmetric.  Reciprocity means 
that the dynamic response at DOF A due to an applied 
force at DOF B are the same as the response at DOF B 
due to an applied force at DOF A. 

3. Distinct Pole Locations:  Each mode of resonant fre-
quency is adequately described by the a pair of distinct 
poles, and the transfer function matrix can be written in 
the partial fraction form of either equation (3) or (4). 

TRANSFER, MASS, STIFFNESS, & 
DAMPING MATRIX RELATIONSHIPS 

Next, relationships between the mass, stiffness, damping 
and transfer matrices are explored.  Taking Laplace trans-
forms of equation (1) and ignoring initial conditions yields, 

)}s(F{)}s(X)]{s(B[ =  (5) 

where, 

=)]s(B[  =++ ]K[s]C[s]M[ 2  (n by n) system ma-
trix 

By comparing equations (2) and (5), it is clear that the trans-
fer function and system matrices are inverses of one anoth-
er.   This relationship can be written as, 

]I[)]s(H][)s(B[)]s(B)][s(H[ ==  (6) 

where, 

=]I[   an (n by n) identity matrix. 

Stiffness Matrix 

The stiffness matrix can be related to the transfer matrix by 
evaluating equation (6) at the origin ( 0s = ) in the complex 
s-plane.  By evaluating both matrices in equation (6) at 

0s =  and applying the definition of the system matrix, 

]I[]K)][0(H[)]0(B][)0(H[ ==  

or, 

( )[ ] 10H]K[ −=  (7) 

Equation (7) says that the stiffness matrix is simply the in-
verse of the transfer function matrix evaluated as 0s = .  

)]0(H[  is called the flexibility matrix. 

Damping Matrix 

Next, the damping matrix can be related to the transfer func-
tion matrix by first taking derivatives of the terms in equa-
tion (6), and then evaluating at 0s = , 

]0[)]0(B][)0(H[)]0(H)][0(B[ =+    (8) 

or, 

[ ] )]0(B)][0(H[)0(H)]0(B[ 1  −−=   (9) 

Substituting the system matrix and stiffness matrix defini-
tions into equation (9) gives, 

]K)][0(H][K[]C[ −=  (10) 

Equation (8) says that the damping matrix is equal to the 
first derivative of the transfer function matrix evaluated at 

0s = , pre- and post-multiplied by the stiffness matrix. 

Mass Matrix 

Finally, the mass matrix can be related to the transfer func-
tion matrix by taking second derivatives of the terms in 
equation (6) and evaluating at 0s = , 

]0[)]0(B)][0(H[)]0(B)][0(H[2)]0(H)][0(B[ =++   

  (11) 

or, 
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Substituting equation (9), plus the system matrix and stiff-
ness matrix definitions into equation (12) gives, 

( ) ( ) ( ) ]K[
2
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To summarize, the mass, stiffness, and damping matrices 
can be calculated from the transfer function matrix and its 
derivatives by using equations (7), (10), and (13). 

The flexibility matrix )]0(H[  and the first and second de-

rivative matrices )]0(H[   and )]0(H[   can each be written 
in terms of modal parameters by using either equation (3) or 
(4).  Hence, full mass, stiffness, and damping matrices can 
calculated once a set of modal data is obtained. 

Inverting the Flexibility Matrix 

The greatest limitation of this computational process is the 
first step, that is, computing the stiffness matrix as the in-
verse of the flexibility matrix 1)]0(H[ − .  An (n by n) ma-
trix must have a rank of n in order to compute its inverse.  
This means that n linearly independent mode shapes are 
needed in order to insure that the flexibility matrix has a 
rank of n.  For example, 1000 linearly independent mode 
shapes are required to compute a stiffness matrix with a 
1000 DOFs.  This is impossible with experimental data. 

MODAL MASS, STIFFNESS AND 
DAMPING FOR LIGHTLY DAMPED 
STRUCTURES 

So far, we have derived formulas for computing the mass, 
stiffness, and damping matrices of a dynamical system from 
modal parameters.  The formulas are impractical, though, 
since sufficient modal parameters are usually not obtainable 
for computing realistic mass, stiffness, and damping matri-
ces. 

In this section, modal mass, stiffness, and damping will be 
defined, and their use will lead to computationally feasible 
formulas for computing the mass, stiffness, and damping 
matrices. 

In addition to the three assumptions already made regarding 
the dynamic model, the following further assumptions are 
now made: 

4.  Light Damping:  The damping coefficient )( kσ  of each 
mode (k) is much less than the damped natural frequen-
cy )( kω .  That is, 

               kk ω<<σ  

5. Normal Mode Shapes:  The imaginary part of each 
mode shape vector }u{ k  is much less than the real part.  
That is, 

   ( ) ( )}u{Re}u{Im kk <<  

   where 

    ( ) ( )}u{Imj}u{Re}u{ kkk +=  

When these assumptions are applied to the stiffness, damp-
ing, and mass equations (7), (10), and (13) it will be shown 
that modal mass, modal stiffness and modal damping can be 
defined in a straight forward manner. 

Modal Stiffness 

Evaluating equation (3) at 0s =  gives, 
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Since the residue matrix is complex in general, equation 
(14) can be rewritten as, 
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Applying assumption 5. Normal Mode Shapes, we can 
conclude that, 

( ) ( )]r[Re]r[Im kk <<  

or that the residue matrix is essentially real. 

( )]r[Re]r[ kk ≈          (16) 

Comparing equations (3) and (4), it is clear that the residue 
matrix is defined in terms of mode shapes as, 

t
kkkk }u}{u{A]r[ =  

Therefore, equation (15) can be rewritten as,  
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If all of the mode shapes are collected together as columns 
of an (n by m) mode shape matrix, 

[ ] ( )mbyn}u{},u{},u{][ m21 =φ  

then equation (17) can be written in matrix form as, 
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where the matrix in the middle is a diagonal matrix.  Ex-
panding this diagonal matrix in detail gives, 










ω+σ
ω

=





















ω+σ
ω

ω+σ
ω

=
















 22

2
m

2
m

mm

2
1

2
1

11

A

A

0

0

A

k
1

 

                                                                                                                                                                       
Hence the stiffness matrix can be written in terms of modal 
parameters as, 
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or, 

  [ ] [ ] 11t ][k]K[ −−
φφ= 

   (19) 

Now, by pre- and post-multiplying equation (19) by the in-
verses of the mode shape matrix and its transpose, a defini-
tion of modal stiffness is obtained, 
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Equation (19) is a formula for computing the full stiffness 
matrix [K] from modal parameters, provided that the inverse 
of the mode shape matrix 1][ −φ exists. 

When the stiffness matrix in equation (19) is pre- and post-
multiplied by a mode shape matrix of normal modes (as-
sumption 5.), the result is a diagonal matrix, shown in equa-
tion (20).  This is a definition of modal stiffness. 

Modal Damping 

Starting with equation (10) and evaluating the first deriva-
tive of the transfer function matrix at 0s =  gives, 
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Substituting for the residue matrix and the pole definitions, 
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Applying assumption 4. Light Damping: kk ω<<σ  re-
duces equation (21) to, 
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Again, if the mode shapes are collected together as columns 
into an (n by m) mode shape matrix, equation (22) can be 
written in matrix form as, 
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Substituting for the stiffness matrices gives, 
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Equation (23) is a formula for computing the full damping 
matrix [C] from modal parameters, provided that the inverse 
of the mode shape matrix 1][ −φ exists. 
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When the damping matrix in equation (23) is pre- and post-
multiplied by a mode shape matrix of normal modes, the 
result is a diagonal matrix, shown in equation (24).  This is 
a definition of modal damping. 

Modal Mass  

Starting with equation (13), a definition of modal mass can 
be obtained by substituting in some of the previous results. 
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Substituting equation (10) into this equation gives, 
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Evaluating the second derivative of the transfer function 
matrix at 0s =  gives, 
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Substituting the residue definition, applying the assumption  
4. Light Damping: kk ω<<σ  , and removing insignifi-
cant terms gives, 
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Substituting equations (26), (19), and (23) into equation (25) 
gives a formula for computing the mass matrix from modal 
parameters, 
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Again, since  kk ω<<σ , the first term is negligible com-
pared to the second, so the mass formula can be further sim-
plified, 
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Equation (27) is a formula for computing the full mass ma-
trix [M] from modal parameters, provided that the inverse 
of the mode shape matrix 1][ −φ exists. 
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When the mass matrix in equation (27) is pre- and post-
multiplied by a mode shape matrix of normal modes, the 
result is a diagonal matrix, shown in equation (28).  This is 
a definition of modal mass. 

Summary of Modal Mass, Stiffness, and Damping 

Given the three equations (20), (24), and (28) for diago-
nalizing the mass, stiffness and damping matrices, it is now 
a straightforward task to define modal mass, stiffness, and 
damping as the diagonal matrix elements in each of the re-
spective formulas, 
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Modal damping: 
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The familiar single degree-of-freedom relationships follow 
from these definitions , 
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)2(mc kkk σ=  k = 1, ... m 

The dynamics of an SDOF system (a single mass, spring, 
damper system) is defined by the transfer function, 
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Comparison of these two forms of the transfer function 
yields the same relationships as the modal formulas above, 
namely, 

σ= 2
m
c

                                )(
m
k 22 ω+σ=  

MASS, STIFFNESS AND DAMPING MATRICES 
FROM ORTHOGONAL MODES 

Equations (19), (23), and (27) are formulas for computing 
the stiffness, damping, and mass matrices from modal data, 
but each formula still requires that a matrix inverse (the 
inverse of the mode shape matrix 1][ −φ  ), be computed.  
This is prohibitively difficult, especially when using exper-
imental modal data.  However, if a final assumption can be 
applied to the mode shapes, the mass, stiffness, and damp-
ing matrix formulas are greatly simplified. 

6. Orthogonal Mode Shapes:  If the mode shape vectors 
are assured to be orthogonal with respect to one another 
(and are also normalized to unit magnitudes), then the mode 
shape matrix has the following properties, 

  1t1t ][][][][]I[][][ −− φ=φ⇒φφ==φφ  

In other words, the inverse of the mode shape matrix is 
equal to its transpose.  This is also called a unitary matrix. 
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Substitution of this property into equations (19), (23) and 
(27) yields the following simplified equations, 

Stiffness Matrix: [ ] t][k][]K[ φφ= 
        (32) 

where, 

[ ]
k  = (m by m) modal stiffness matrix. 

Damping Matrix: [ ] t][c][]C[ φφ= 
   (33) 

where, 

[ ]
c  = (m by m) modal damping matrix. 

Mass Matrix: [ ] t][m][]M[ φφ= 
   (34) 

where, 

[ ]
m  = (m by m) modal mass matrix. 

][φ  = (n by m) mode shape matrix. 

There are two significant advantages using equations (32), 
(33) and (34) compared to the complex model calculations 
(19), (23), and (27).  First, there is no matrix inversion.  
These calculations are much simpler and thus reduce the 
potential for computational error.  Secondly, if n-degrees of 
freedom are measured on a structure but only m-modes are 
identified and )nm( << , then (n by n) mass, stiffness, 
and damping matrices can still be computed with the above 
formulas whereas the complex mode formulas are limited to 
computing (m by m) sized matrices.  This second advantage 
allows a more direct comparison of test results with matrices 
derived from finite element modeling. 

CONCLUSIONS 

Formulas for computing the full mass, stiffness, and damp-
ing matrices from the transfer function matrix and its deriva-
tives were derived first.  Since the transfer function matrix 
and its derivatives can be synthesized from a set of modal 
parameters, these formulas provide a means for computing 
mass, stiffness, and damping from experimental modal pa-
rameters. 

This approach has a serious computational limitation, how-
ever.  The first step requires that the flexibility matrix be 
inverted to obtain the stiffness matrix.  Not only is matrix 
inversion an "error amplifying" process (thus amplifying the 
errors in experimental modal data), but the number of line-
arly independent mode shapes required to yield a full rank  
flexibility matrix in prohibitive for most practical situations. 

Next, we made further assumptions regarding the modal 
parameters of the structure in order to define its modal mass, 
stiffness, and damping.  With these assumptions, the formu-
las for computing the full mass, stiffness, and damping ma-

trices were greatly simplified.  Unfortunately, these new 
formulas still require a set of linearly independent mode 
shape vectors, and the number of modes must equal the 
number of DOFs in the desired mass, stiffness, and damping 
matrices. 

Finally, we made a further restrictive assumption regarding 
the mode shapes, namely that they are orthogonal to one 
another.  When this assumption can be (approximately) sat-
isfied, the formulas for computing mass, stiffness, and 
damping from experimental modal data are straightforward 
and computationally tractable.  
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