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INTRODUCTION 

For classically damped structures, modal mass, stiffness and 
damping can be defined directly from formulas that relate 
the full mass, stiffness and damping matrices to the transfer 
function matrix. The modal mass, stiffness, and damping 
definitions are derived in a previous paper [1], and are re-
stated here for convenience. 

The transfer function is defined over the complex Laplace 
plane, as a function of the variable )js( ω+σ= .  Exper-
imentally, the values of a transfer function are measured 
only along the ωj -axis in the s-plane, that is for )js( ω= .  
These values are referred to as the Frequency Response 
Function (FRF). 

CLASSICALLY DAMPED STRUCTURE 

A classically damped structure is one where the modal 
damping is much smaller than the damped natural frequen-
cy of each mode (it is lightly damped), and the mode shapes 
are primarily real valued (they approximate normal modes). 

Light Damping:  A structure is lightly damped if the damp-
ing coefficient )( kσ  of each mode (k) is much less than the 

damped natural frequency )( kω .  That is, 

               kk ωσ <<   k=1,…, Modes (1) 

Normal Mode Shapes:  If the imaginary part of each mode 
shape vector }u{ k  is much less than the real part, that is if, 

   ( ) ( )}u{Re}u{Im kk <<  (2) 

where, 

   ( ) ( )}u{Imj}u{Re}u{ kkk +=  (3) 

the structure's mode shapes approximate normal modes, 
where, 

=}u{ k  DOFs-dimensional mode shape vector for the 
thk  mode. 

Modes = number of modes of vibration. 

DOFs = number of DOFs of the structure model. 
Both of these assumptions are satisfied by a large variety of 
real structures from which experimental modal data can be 
obtained. 

MODAL MASS MATRIX 

When the mass matrix is post-multiplied by the mode shape 
matrix and pre-multiplied by its transpose, the result is a 
diagonal matrix, shown in equation (4).  This is a definition 
of modal mass. 
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where, 

=]M[ (DOFs by DOFs) mass matrix. 

[ ]==φ }u{}u{}u{][ m21  (DOFs by Modes) mode 
shape matrix. 
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mass matrix. 

The modal mass of each mode (k) is a diagonal element of 
the modal mass matrix, 

Modal mass: 
kk

k A
1m
ω

=    k=1,…, Modes  (5) 

=kp  =ω+σ− kk j  pole location for the thk mode. 

=σk  damping coefficient of the thk  mode. 

=ωk  damped natural frequency of the thk  mode. 

=kA  a scaling constant for the thk  mode. 

MODAL STIFFNESS MATRIX 

When the stiffness matrix is post-multiplied by the mode 
shape matrix and pre-multiplied by its transpose, the result 
is a diagonal matrix, shown in equation (6).  This is a defi-
nition of modal stiffness. 
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where, 

=]K[ (n by n) stiffness matrix. 
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stiffness matrix. 

The modal stiffness of each mode (k) is a diagonal element 
of the modal stiffness matrix, 

Modal stiffness: 
kk
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MODAL DAMPING MATRIX 

When the damping matrix is post-multiplied by the mode 
shape matrix and pre-multiplied by its transpose, the result 
is a diagonal matrix, shown in equation (8).  This is a defi-
nition of modal damping. 
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where, 

=]C[  (DOFs by DOFs) damping matrix. 
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damping matrix. 

The modal damping of each mode (k) is a diagonal element 
of the modal damping matrix, 

Modal damping: 
kk

k
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SDOF RELATIONSHIPS 

The familiar single degree-of-freedom (SDOF) relationships 
follow from the definitions of modal mass, stiffness, and 
damping for multiple DOF systems, 
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SCALING MODE SHAPES TO UNIT MODAL 
MASSES 

Mode shapes are called "shapes" because they are unique in 
shape, but not in value.  That is, the mode shape vector 

}u{ k  for each mode (k) does not have unique values.  It 
can be arbitrarily scaled to any set of values, but the rela-
tionship of one shape component to any other is unique.  In 
other words, the "shape" of }u{ k  is unique, but its values 
are not.  A mode shape is also called an eigenvector, which 
means that its "shape" is unique, but its values are arbitrary. 

Notice also, that each of the modal mass, stiffness, and 
damping matrix definitions (5), (7), and (9) includes a scal-
ing constant )A( k .  This constant is necessary because the 
mode shapes are not unique in value, and therefore can be 
arbitrarily scaled. 

Unit Modal Masses 

One of the common ways to scale mode shapes is to scale 
them so that the modal masses are one (unity).  Normally, if 
the mass matrix [ ]M  were available, the mode vectors 
would simply be scaled such that when the triple product 
[ ] [ ] [ ]φφ Mt  was formed, the resulting modal mass matrix 
would equal an identity matrix. However, when the modal 
data is obtained from experimental transfer function meas-
urements (FRFs), no mass matrix is available for scaling in 
this way.  

Even without the mass matrix however, experimental mode 
shapes can still be scaled to unit modal masses by using the 
relationship between residues and mode shapes.   

t
kkk }u}{u{A)]k(r[ =  k=1,…, Modes (12) 

where, 

=)]k(r[  (DOFs by DOFs) residue matrix for the thk  
mode. 

Residues are the constant numerators of the transfer func-
tion matrix when it is written in partial fraction form, 
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)]k(r[

)ps(j2
)]k(r[)]s(H[  (13) 

* -denotes the complex conjugate. 

Residues have unique values, and have engineering units.  
Since the transfer functions typically have units of (motion / 
force), and the denominators have units of Hz or (radi-
ans/second), residues have units of (motion / force-second). 
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Equation (12) can be written for the thj  column (or row) of 
the residue matrix and for mode (k) as, 
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       Unique           Variable  k=1,…, Modes 

The importance of this relationship is that residues are 
unique in value and reflect the unique physical properties 
of the structure, while the mode shapes aren't unique in 
value and can therefore be scaled in any manner desired. 

The scaling constant kA must always be chosen so that 

equation (14) remains valid.  The value of kA can be chosen 
first, and the mode shapes scaled accordingly so that equa-
tion (14) is satisfied.  Or, the mode shapes can be scaled 
first and kA computed so that equation (14) is still satisfied. 

In order to obtain mode shapes scaled to unit modal masses, 
we simply set the modal mass to one (1) and solve equation 
(5) for kA , 

k
k

1A
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=  k=1,…, Modes (15)  

Driving Point Measurement 

The unit modal mass scaled mode shape vectors are ob-
tained from the thj  column (or row) of the residue matrix 
by substituting equation (15) into equation (14), 

( )
( )

( )

( )

( )
( )

( )




























⋅
⋅
⋅ω

=































⋅
⋅
⋅

=































⋅
⋅
⋅

kr

kr
kr

kr

kr

kr
kr

uA
1

u

u
u

nj

j2

j1

jj

k

nj

j2

j1

jkk

nk

k2

k1

(16) 

     UMM           k=1,…, Modes 

Notice that the driving point residue ( )krjj  (where the row 
index(j) equals the column index(j)), plays an important role 
in this scaling process.  Therefore, the driving point residue 
for each mode(k) is required in order to use equation (16). 

Triangular Measurement 

For cases where the driving point measurement cannot be 
made, an alternative set of measurements can be used to 
provide the driving point mode shape component jku .  
From equation (14) we can write, 

)k(rA
)k(r)k(r

u
pqk

jqjp
jk =  k=1,…, Modes (17)  

Equation (17) can be substituted for jku  in equation (16) to 
yield mode shapes scaled to unit modal masses.  Equation 
(17) says that as an alternative to making a driving point 
measurement, three other measurements can be made in-
volving DOF(p), DOF(q), and DOF(j). 

DOF(j) is the reference (fixed) DOF for the thj  column (or 
row) of transfer function measurements, so the two meas-
urements jpH  and jqH would normally be made.  In addi-

tion, one extra measurement pqH is also required in order to 

solve equation (17).  Since the measurements jpH , jqH , 

and pqH form a triangle in the transfer function matrix, they 
are called a triangular measurement. 

CONVERTING RESIDUES TO DISPLACEMENT 
UNITS 

Vibration measurements are often made using accelerome-
ters to measure acceleration response, or vibrometers to 
measure velocity.  Excitation forces are typically measured 
with a load cell.  Therefore, transfer function measurements 
made with these transducers will have units of either (accel-
eration/force) or (velocity/force). 

Modal residues always carry the units of the transfer func-
tion multiplied by (radians/second).  Therefore, residues 
taken from transfer functions with units of (accelera-
tion/force) will have units of (acceleration/force-sec).  
Likewise, residues taken from measurements with units of  
(velocity/force) would have units of (velocity/force-sec).  
Similarly, residues taken from measurements with units of 
(displacement/force) would have units of (displace-
ment/force-sec). 
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Since the modal mass, stiffness, and damping equations (4), 
(6), and (8) assume units of (displacement/force), residues 
with units of (acceleration/force-sec) or (velocity/force-sec) 
must be "integrated" to units of (displacement/force-sec) 
units before performing mode shape scaling.  

Integration of a time domain function has an equivalent op-
eration in the frequency domain.  Integration of a transfer 
function is done by dividing it by the Laplace variable(s), 

2
av

d s
)]s(H[

s
)]s(H[)]s(H[ ==  (18) 

where, 

)]s(H[ d = transfer matrix in (displacement/force) units. 

)]s(H[ v = transfer matrix in (velocity/force) units. 

)]s(H[ a = transfer matrix in (acceleration/force) units. 

Since residues are the result of a partial fraction expansion 
of a transfer function, residues can be "integrated" directly 
as if they were obtained from an integrated transfer function 
using the formula, 

2
k
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)]k(r[)]k(r[ ==  k=1,…, Modes (19)  

where, 

)]k(r[ d = residue matrix in (displacement/force) units. 

)]k(r[ v = residue matrix in (velocity/force) units. 

)]k(r[ a = residue matrix in (acceleration/force) units. 

=kp  =ω+σ− kk j  pole location for the thk mode. 

Since we are assuming that damping is light and the mode 
shapes are normal, equation (19) can be simplified to, 
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Equations (20) and (21) can be summarized in the following 
table. 

 
To change transfer 

function units 
 

Multiple residues 

From To By 
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Table 1. Residue Scale Factors. 

where,   
)(

F 22 ωσ
ω
+

≅   (seconds) 

EFFECTIVE MASS 

It has already been shown that modal mass is really just a 
scaling constant that is used to relate mode shapes to resi-
dues.  Residues have unique values and engineering units.  
Mode shapes don’t have unique values (only their shapes 
are unique), and don’t have any units. 

Nevertheless, a useful interpretation of modal data is to ask 
the question, “What is the effective mass of a structure for 
a given DOF, at one of its resonant frequencies?”  In other 
words, if a tuned absorber or other modification were at-
tached to the structure at a specified DOF, “What would its 
mass (stiffness & damping) be if it were treated like an 
SDOF mass-spring-damper?” 

The answer to that question follows from a further use of the 
orthogonality equations (4), (6), and (8) and the definition of 
mode shapes scaled to unit modal masses. 

Equation (16) can be used to convert residues with (dis-
placement/force-sec) units into mode shape components 
scaled to unit modal masses.  One further assumption is 
necessary in order to define effective mass. 

Diagonal Mass Matrix. The mass matrix ]M[  is assumed 
to be diagonal.  

This assumption is usually made in finite element modeling 
of structures, and in general is a good approximation for 
most real structures.  Assuming a diagonal mass matrix and 
unit modal mass mode shapes, equation (4) can be rewritten 
as, 

 ( ) 1umass 2
jk

n

1j
j =∑

=

 k=1,…, Modes (22) 
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where, 

=jmass jth diagonal element of the mass matrix. 

=jku  jth component of the unit modal mass mode shape. 

Now, assuming that the structure is viewed as a mass on a 
spring with damper at DOF(j), then its effective mass for 
DOF(j) at the frequency of mode(k) is determined from 
equation (22) as,  

( )2jk
j u

1mass =   j=1,…, DOFs (23) 

Assuming further that DOF(j) is a driving point, equation 
(16) can be used to write the mode shape component jku  in 

terms of the modal frequency kω and driving point residue 

)k(rjj  as, 

)k(ru jjkjk ω=  j=1,…, DOFs (24) 

Substituting equation (24) into equation (23) gives another 
expression for the effective mass of a structure for DOF(j) 
at the frequency of mode(k), 

)k(r
1mass
jjk

j ω
=   j=1,…, DOFs (25) 

Units Check 
Assuming that the driving point residue )k(rjj  has units of 
(displacement/force-sec) as discussed earlier, and the mod-
al frequency kω  has units of (radians/sec), then the effec-
tive mass would have units of ((force-sec2) /displacement), 
which are units of mass. 

Once the effective mass is known, the effective stiffness & 
damping of the structure can be calculated using equations 
(10) and (11). 

ILLUSTRATIVE EXAMPLE 

Suppose that we have the following data for a single mode 
of vibration, 

 Frequency = 10.0 Hz. 

Damping = 1.0 % 

Residue Vector =

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Also, suppose that the measurements from which this data 
was obtained have units of (Gs/Lbf).  Also assume that the 
driving point is at the second DOF of the structure.  Hence 
the driving point residue = 2.0. 

Converting the frequency and damping into units of radi-
ans/second, 

Frequency = 62.83 Rad/Sec 

Damping = 0.628 Rad/Sec 

The residues always carry the units of the transfer function 
measurement multiplied by (radians/second).  Therefore, 
for this case the units of the residues are, 

Residue Units = Gs/(Lbf-Sec) = 386.4 Inches/(Lbf-Sec3) 

Therefore, the residues become, 

Residue Vector =
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Since the modal mass, stiffness, and damping equations (4), 
(6), and (8) assume units of (displacement/force), the 
above residues with units of (acceleration/force) have to be 
converted to (displacement/force) units. This is done by 
using the appropriate scale factor from Table 1.  For this 
case: 

000253.0
83.62
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Multiplying the residues by 2F gives, 

Residue Vector =

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Finally, to obtain a mode shape scaled to unit modal mass, 
Equation (18) is used.  The mode shape of residues must be 
multiplied by the scale factor, 

927.17
0.1955

83.62
r
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to obtain the unit modal mass mode shape, 
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UMM Mode Shape =

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The effective mass at the driving point is therefore calculat-
ed using equation (23) as, 
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or using equation (25) as, 
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