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ABSTRACT 
In the sine dwell school of modal testing, a frequency 
domain function, most often called the Mode Indicator 
Function (MIF), has been employed for several years to 
detect the presence of real normal modes. This function 
is calculated from Frequency Response Functions from 
a single exciter location to highlight those frequencies 
where the global response phase lags the sinusoidal 
excitation by 90 degrees. 
 
Recently, a multivariate mode indicator procedure was 
presented that, using FRF's from several exciter 
locations, can detect repeated roots, as well as providing 
initial force patterns for the sine dwell tuning of the 
associated modes. 
 
This paper presents a brief outline of the theory of this 
multivariate mode indicator and then shows how the 
information generated by this procedure may be used for 
the extraction of selected modal parameters through 
function enhancement and frequency domain SDOF 
techniques. The use of the multivariate mode indicator in 
the traditional MDOF procedures will also be discussed. 
Examples will be presented from several tests. 
 
INTRODUCTION 
An automatic method for finding optimum force patterns 
has been a key issue for the cost effective application of 
sine dwell modal testing. A mode is considered to be 
tuned cleanly when the acceleration response is 90 
degrees out of phase with the excitation. In 1958, Asher 
[1] used this criterion to show that the determinant of the 
real part response matrix of a (square) frequency 
vanishes at a resonance frequency, and that the real 
force vector that spans the null space of this matrix is an 
optimal force pattern. This approach was used with 
modest success, probably because of the lack of 
adequate computer tools to measure and store accurate 
FRF measurements. Later, other researchers [2,3] 
extended Asher's method to rectangular FRF matrices 
and to modal tuning in a least squares sense. 
 
In 1984, Vold [4] defined modal tuning as forcing to as 
low a value as possible, the ratio of the kinetic energies 

of in-phase response to total response. This minimum 
ratio, when plotted as a function of frequency, is called 
the Primary Mode Indicator Function, and its minima 
indicate the presence of modes that can be excited as 
real normal modes from the current set of exciter 
locations. The minimization problem that results from 
this approach turns out to be equivalent to finding the 
solutions of a generalized hermitian eigenvalue problem 
defined by an approximate mass matrix and the FRF 
matrix between the exciters and the response locations. 
In the theory section it is shown how this formulation 
produces higher order mode indicator functions and 
orthogonal force vectors, such that repeated modes can 
be detected and excited separately. 
 
Since the mode indicator functions and associated force 
patterns are calculated from FRF matrices, this 
technology has also shown itself to be a valuable 
complement to the modern FRF based modal parameter 
extraction methods, such as Single and Multiple Degree 
of Freedom (SDOF and MDOF) curve fitting. The mode 
indicator functions show the resonance frequencies, 
including repeated roots, and the force patterns may be 
used to enhance FRFs to make SDOF methods 
applicable to high modal density situations. In fact, this 
approach allows for an automated computer sine dwell 
simulation. 
 
MATHEMATICAL BACKGROUND 
The structural response ( )ωX  is steady state for a 

purely real force vector ( )ωF , and is given by 
 
( ) ( ) ( )ωω=ω FHX  (1) 

 
where ( )ωH  is the frequency response function matrix. 
Dropping the frequency from the notation, 
 

HFX =  (2) 
Expanding into real and imaginary components, 
equation (2) becomes, 
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FiHFHiXX irir +=+  (3) 
 
If a normal mode can be excited at a particular 
frequency, a force vector F must be found such that the 
real part rX  of the response vector is as small as 
possible compared to the total response. We define the 
norm of the real response by 
 

r
t

r
2

r MXXX =  (4) 
 
where M is a mass matrix, either from a finite element 
model or a rough estimate of local mass distribution. 
This norm is proportional to a measure of kinetic energy. 
Likewise, the norm of the total response is given by 
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The minimization problem is given by 
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which after some algebra becomes 
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+
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where r

t
r MHHA =  , and i

t
i MHHB=  

 
Noting the similarity of equation (7) to a Rayleigh 
quotient, it can be shown that. the solution to equation 
(7) is found by finding the smallest eigenvalue minλ  and 

corresponding eigenvector minF  of  
 

λ+= F)BA(AF  (8) 
 
Plotting the smallest eigenvalue as a function of 
frequency gives a multivariate mode indicator function 
that clearly shows at which frequencies a normal mode 
exists that can be excited from the current set of exciter 
locations. Repeating the procedure for the second 
smallest eigenvalue reveals which frequencies, if any, 
are repeated modes. In those cases, the associated 
force eigenvector will be orthogonal to the first one, so 
that both modes can be tuned individually at the same 
frequency. 
 

Consequently, all eigenvalues of equation (8) should be 
plotted as functions of frequency to show the multiplicity 
of normal modes. 
 
EXPERIMENTAL APPROACH 
In order to demonstrate the use of the multivariate MIF, 
one analytical model and several test structures were 
examined to provide a variety of conditions. Each 
physical structure was tested using a GenRad system 
running the DATM portion of the SDRC Modal-Plus 
software. 
 
ANALYTICAL EXAMPLE 
An analytical frame model with four modes of vibration 
was generated. FRFs were synthesized for 27 
responses referenced to each of 2 driving points. 
 
Figure 1 shows a driving point FRF derived from the 
analytical model. Figure 2 shows a plot of the primary 
MIF overlaid with the secondary MIF for the frame data. 
These MIFs are based on both reference locations and a 
set of response locations taken over the structure. All 
modes are indicated through the minima of the primary 
MIF, with the secondary MIF being inactive except for 
the two closely spaced modes. The slight drop in the 
secondary MIF is a result of the frequency resolution 
between the two modes. The resolution is sufficiently 
fine to separate the modes thereby producing only a 
slight drop. A coarser resolution would have forced a 
significantly lower value of the secondary MIF, indicating 
two modes within a spectral line. 
 
CIRCULAR PLATE EXAMPLE 
A circular plate was placed on a soft foam pad and 
accelerometers were placed at two points to measure 
response normal to the surface. Impact testing was 
chosen to acquire a modal survey. By using two 
stationary transducers, impacting around the structure, 
and assuming reciprocity, we obtain information 
equivalent to performing the test using two fixed exciter 
positions. 
 
This geometrically symmetric structure was studied to 
examine the behavior of the multivariate MIF in the 
presence of repeated roots. 
 
Figure 3 shows a driving point FRF obtained in the 
experimental test. Figure 4 shows a plot of the primary 
MIF overlaid with the secondary MIF for the circular plate 
test data. These MIFs are based on both reference 
locations and a set of functions taken over the structure. 
 
The primary MIF has significant minima at four 
frequencies corresponding to modes of vibration of the 
plate. The secondary MIF has significant minima at three 
frequencies, corresponding to minima in the primary 
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MIF. A drop in the primary and secondary MIF at these 
same frequencies indicates the presence of repeated 
roots. A Polyreference analysis [5,6] verifies that these 
are indeed repeated roots. 
 
For each mode indicated by the MIFs, the corresponding 
force pattern, as shown in table 1, was employed to 
enhance the FRFs. A force pattern consists of an 
in-phase or out-of-phase force level for each reference 
(exciter location) used in the calculation of the MIF. An 
enhanced FRF for a given response is obtained by 
summing the product of the FRF, between that response 
and each reference, times the associated force level. 
Enhancing the FRFs enables Single Degree of Freedom 
(SDOF) techniques, in this case quadrature curve fitting, 
to be used. 
 
As can be seen in table 2, even for the repeated roots, 
the primary force patterns produces mode shapes 
orthogonal to the ones obtained by using the secondary 
force patterns. 
 
BODY-IN-WHITE EXAMPLE 
A body-in-white structure was mounted on four airbags 
which were attached to ground. The structure was 
excited using a pair of 50 pound shakers mounted 
vertically and symmetrically on the front of the structure. 
Load cells were mounted directly onto the structure, and 
thin metal rods about six inches long were used as 
stingers connecting the load cells to the shakers. To 
eliminate undesired motion of the excitation setup, a hot 
glue gun was used to fill in gaps between the shaker and 
any shims or blocking used for height adjustments. 
 
A total of 35 sampling periods were taken using 
triggered random excitation. Base band data was 
acquired up to 64 Hertz with 512 spectral lines of 
alias-free data. 
 
Figure 5 shows a driving point FRF obtained in the 
experimental test. Figure 6 shows a plot of the primary 
MIF overlaid with the secondary MIF for the 
body-in-white test data. These MIFs are based on both 
reference locations and a set of functions taken over the 
structure. This structure exhibits a higher modal density 
than the preceding examples as shown by the driving 
point function shown in figure 5. The minima of the 
primary MIF show how well the individual modes can be 
driven as real, normal modes from the current set of 
exciter locations. The secondary MIF in this example 
features slight drops only, suggesting no repeated roots. 
 
AEROSPACE STRUCTURE EXAMPLE 
An aerospace structure was excited using three 100 
pound shakers mounted vertically. Load cells were 
mounted directly onto the structure, and nylon rods were 

used as stingers connecting the load cells to the 
shakers. 
A total of 50 sampling periods were taken using pure 
random excitation and a 50$ overlap. Baseband data 
was acquired up to 16 Hertz with 512 spectral lines of 
alias-free data. 
 
This example was chosen to illustrate an isolated root, a 
repeated root, and two very close roots all in a narrow 
frequency range. Figure 7 shows a plot of the primary 
MIF overlaid with the secondary MIF for this test data. A 
modest drop in the secondary MIF occurs at the closely 
spaced modes; whereas, at the repeated root the 
secondary MIF is almost as low as the primary MIF. The 
tertiary MIF exhibits no significant drops within this 
frequency range, indicating multiplicity of two at most. 
 
CONCLUSIONS 
The Multivariate Mode Indicator was originally developed 
as part of an activity to automate the tuning of real 
normal modes in sine dwell ground vibration testing. 
However, because of its ability to identify modes of 
vibration and provide forcing patterns to enhance those 
modes, MIF is applicable to other areas of modal testing. 
These applications include identifying roots and their 
multiplicity as well as allowing for the successful usage 
of SDOF methods in the presence of high modal density. 
The MIF technique complements the more advanced 
curve fitting algorithms in that it provides a phase and 
kinetic energy criterion for mode identification. In 
addition this MIF technique provides a field system 
alternative to advanced, compute intensive modal 
extraction algorithms by extending the applicability of 
SDOF methods. 
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Table 1.  MIF Forcing Patterns Circular Plate Test Structure 
 
 

Freq. Hz 
 

Reference 
1Y                       6Y 

MIF 
Pattern 

 
       346.24 
       552.69 
       737.63 
     1202.15 
       346.24 
       737.63 
     1202.15 
 

 
      0.1044 
     -0.8217 
     -0.4825 
     -0.7774 
      0.8980 
      0.8699 
      0.2304 
 

 
      0.9945 
     -0.5698 
      0.8759 
      0.6289 
      0.4398 
      0.4930 
      0.9731 
 

 
Primary 
primary 
primary 
primary 

secondary 
secondary 
secondary 

 
 
 
 
 

Table 2.  Orthogonality Values Circular Plate Test Structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Freq. 346.24 552.69 737.63 1202.15 346.24 737.63 1202.15 

346.24 
552.69 
737.63 

1202.15 

1.00000 0.00007 
1.00000 

0.00063 
0.00243 
1.00000 

0.00004 
0.00753 
0.00087 
1.00000 

0.00001 
0.00544 
0.00087 
0.00053 

0.00133 
0.00674 
0.00001 
0.00027 

0.00007 
0.00328 
0.00081 
0.00513 

346.24 
737.63 

1202.15 

    1.00000 0.00042 
1.00000 

0.00019 
0.00053 
1.00000 
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Figure 1. Analytical Frame Structure 
Driving Point FRF 

 
 
 

 
 

Figure 2. Analytical Frame Structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Circular Plate Test Structure 
Driving Point FRF 

 
 
 

 
 

Figure 4. Circular Plate Test Structure 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Page 5 of 6 



IMAC III, 1985 

 
Figure 5. Body-In-White Test Structure 

Driving Point FRF 
 
 
 

 
 

Figure 6. Body-In-White Test Structure Primary  
MIF, Solid Secondary MIF, Dots 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Aerospace Test Structure  
Primary MIF, Solid Secondary MIF, 

 Dots Tertiary MIF, Asterisks. 
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