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Abstract 

It is shown that among the various damping mechanisms 
that are generally encountered in a mechanical structure, 
only the “viscous component” actually accounts for energy 
loss. The remaining portion of the damping force is due to 
non-linearities, which do not dissipate energy. 
Consequently, a linear model of a vibratory mechanical 
system involves only viscous damping, although the 
damping factor may depend upon the waveform or 
amplitude of the excitation signal. 
 
 
Introduction 

The motion of an elastic mechanical system is commonly 
modeled in the time domain by the equation 
 

)t(f)t(Kx)t(xC)t(xM =++   (1) 
 
where f(t) is the driving force vector, and x(t) is the 
resulting displacement vector of a system with mass. 
Damping, and stiffness matrices denoted by M, C, and K, 
respectively. The dots indicate derivatives with respect to 
the time variable (t). If we pre-multiply this equation by the 
transposed velocity vector )t(x)t(v tt = , we obtain an 
instantaneous power balance equation. 

 

)t(Kx)t(v)t(Cv)t(v)t(xM)t(v ttt ++  
 
 )t(f)t(vt=  (2) 
 

We can integrate this equation over any time interval )(τ
of interest to obtain an energy balance equation for the 
particular time interval. The energy associated with the mass 
and stiffness matrices is stored energy that can always be 
recovered, but the portion given by ∫τ dt)t(Cv)t(vt , is 

dissipated, usually in the form of heat, and is lost from the 
system. In this mathematical formulation, the force )t(Cv  
is called a viscous damping force, since it is proportional to 
velocity. However, as we discuss next, this does not 
necessarily imply that the physical damping mechanism is 
viscous in nature. It is important to recognize that the 
physical damping mechanism and the mathematical model 
of the mechanism are two distinctly different concepts. The 
term “viscous” is commonly used indiscriminately to denote 

both a damping mechanism (i.e. fluid flow), and a 
mathematical representation of dissipated energy described 
by a force (i.e. )t(Cv ) that is proportional to velocity. 
 

In practice most mechanical structures exhibit rather 
complicated damping mechanisms, but we will show that all 
of these can be mathematically modeled by a force 
proportional to velocity, so that the mathematical usage of 
the term “viscous” is generally implied. 
 

We will show that there is always a viscous component of 
damping force (proportional to velocity), and that this 
viscous component accounts for all energy loss from the 
system. We will see that all remaining force terms are due to 
non-linearities, and do not cause energy dissipation. Thus, 
we only need to measure the viscous term to characterize 
the system using a linear model. 
 

In appendix A, we discuss the current technique of using 
an imaginary stiffness to model structural damping (for 
sinusoidal excitation), and in appendix B. we discuss the 
concept of hereditary damping introduced by Klosterman 
[4]. Reference [5] is also recommended for a general 
discussion of damping mechanisms and mathematical 
models. 
 
 
Damping Mechanisms 

Three of the most common damping mechanisms are: 1.) 
coulomb (sliding frictions [2] in which the force magnitude 
is independent of velocity.) 2.) viscous, where force is 
proportional to velocity, and 3.) structural (hysteretic, 
internal, material) [3], in which the force is proportional to 
the magnitude of the displacement from some quiescent 
position. 
 

From a microscopic point of view, most damping 
mechanisms involve frictional forces that oppose the motion 
(velocity) of some part of a physical system, resulting in 
heat loss. For example coulomb friction force is caused by 
two surfaces sliding with respect to one another, and this 
sliding force is independent of velocity, once the initial 
static friction (stiction) is overcome. 
 

Structural damping may be viewed as a sliding friction 
mechanism between molecular layers in a material, in which 
the friction force is proportional to the deformation or 
displacement from some quiescent or rest position.  Imagine 
a rod made of a bundle of axial fibers. The sliding friction 
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force between each fiber and its neighbor will increase as 
the rod is bent and the fibers are pinched together. This 
pinching phenomenon occurs in most materials as the 
various molecular layers slide past one another. The result is 
a damping force that is proportional to the displacement 
from the undisturbed position. This mechanism was verified 
for a wide range of materials by Kimball and Lovell in 1927 
[3]. 
 

Viscous damping occurs when molecules of a viscous 
fluid rub together, causing a resistive friction force that is 
proportional to, and opposing the velocity of an object 
moving through the fluid. 
 

We can conveniently characterize damping mechanisms 
of these types by the force equation. 
 

)vsgn()t(gc)t(f −=  (3) 
 

Where )t(f  is the damping force, c is a scalar damping 

coefficient, )t(g  is some arbitrary magnitude function, 

and sgn(v) is the signum of velocity defined by 
 

1)vsgn( = , for v > 0  
 0= , for  v = 0 
 1−= , for  v < 0 (4) 

 
We can catalog the three most common damping 

mechanisms by choosing the appropriate )t(g  as follows: 
 
1) Coulomb: c)t(f,1g c −==  )vsgn(  (5) 

2) Viscous:  cv)vsgn(vc)t(f,vg v −=−==  (6) 

3) Structural: )vsgn(xc)t(f,xg s −==  (7) 
 

Notice that only the viscous damping force is a linear 
function of velocity, and that the other mechanisms are 
inherently non-linear in nature. 
 

As an example, let's assume that the displacement is 
sinusoidal so. 
 

,tsin)t(x ω=   and (8) 
tcos)t(x)t(v ωω==   (9) 

 
The resulting coulomb damping force is obviously a 

square wave of period 
ω
π2

, with peak amplitude c. The 

viscous damping force is a cosine function, and the 
structural damping force is the product of the coulomb 

square wave force times tsin ω . 
 
Hysteresis Curves 

It is instructive to plot damping force vs. displacement for 
the three cases mentioned above. These plots are called 
“hysteresis” curves, and we will see that the areas enclosed 
by these curves represent the system energy loss per cycle 
of excitation. 
 

For viscous damping, we obtain the ellipse shown in 
Figure 1, having an area of cπω , units of energy loss per 
cycle. 
 

Coulomb damping yields a rectangular hysteresis curve, 
shown in Figure 2. 
 

Structural damping causes the “bow tie” curve shown in 
Figure 3. 

 

 
 

Figure 1. Hysteresis Curve for Viscous Damping 
 

 
 

 
Figure 2. Hysteresis Curve for Coulomb Damping 
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Figure 3. Hysteresis Curve for Structural Damping 
 

An “equivalent viscous” representation can always be 
obtained by constructing an elliptical hysteresis curve 
having the same area and corresponding to the same 
displacement as the actual hysteresis curve. The resulting 
force is simply the “equivalent viscous” force for that 
particular mechanism. 
 

The use of the term “hysteretic” damping is somewhat 
confusing, since all damping mechanisms involve a 
hysteresis curve of some sort. Thus, we prefer to use the 
word “structural” to describe this particular mechanism. It 
should be emphasized that the hysteresis curves, which have 
been illustrated, are for the case or sinusoidal displacement. 
The curves will be different if other displacements are used. 
 

By definition, the total energy loss over each cycle of the 
displacement is given by 
 

dx)t(f2dt)t(v)t(f
1

1
0

2

∫∫ −
==ε∆ ω

π

 (10) 

 
which is simply the area enclosed by the appropriate 
hysteresis curve. Notice that his area is proportional to 
frequency for the viscous case, but independent of 
frequency for the other two mechanisms. This explains why 
the damping factor of structures having primarily 
non-viscous damping remains low. Even at high resonant 
frequencies. If all damping were viscous, then small, high 
frequency bells would react to a strike with a dull thud, 
instead of a clear tinkle. 
 
Fourier Series Analysis 

Each of these damping forces can be represented by a 
Fourier series. For the coulomb case, we have 
 

..,5,3,1k,)1(
k
c4

2
kF 2

1k

c =−
π

−=







π
ω −

 (11) 

 

where k is the harmonic number, and cF (
π
ω

2
k

)  

 
is the frequency spectrum amplitude of )t(fc . For structural 
damping, we can write 
 

[ ] 5,3,1k,
12

)1(c2
2
kF

4
k

2
1k

s =
+

−
π

−=







π
ω

−

 (12) 

 
where [ ]4

k  is the integer part of 4
k . In both cases, we have 

odd harmonic cosine terms. Only the fundamental term 
(k=l) can dissipate energy, since there is no motion at any of 
the harmonic frequencies. Thus, the viscous component of 
each of these forces is defined as simply the fundamental 
term, and all energy loss is accounted for by this term. This 
result is derived in a more general way in the next section. 
 
 
The Equivalent Viscous Component 

Let's define f(t) to be the damping force vector resulting 
from some displacement vector x(t), or corresponding 
velocity vector )t(v  = )t(x . We will not restrict the 
excitation waveform, so these time functions will be 
completely general. We will also not restrict our attention to 
any particular damping mechanism, but will allow any 
linear or non-linear damping force vector that may occur. 
The energy loss over any arbitrary time interval τ is defined 
to be  
 

dt)t(v)t(fE t∫
τ

=  (13) 

 
where the superscript t denotes the transpose of the vector. 
If the excitation is periodic, than τ will generally be chosen 
as some multiple of the period. For random excitation, we 
would choose τ to be long compared to the width of the 
autocorrelation function of the exciting signal. 
 

Let's define a viscous force vector )t(fv  to be 
proportional to velocity, as follows 
 

)t(vb)t(fv =  (14) 
 
where b is some scalar proportionality constant to be 
determined by a least-squares fit of )t(fv  to )t(f , as we 
describe next. Define the squared error c between the 
observed damping force and the desired equivalent viscous 
force component by 
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dt)bvf()bvf(c t −−= ∫
τ

 (15) 

Next, we choose b to minimize c by setting 
db
dc

 to zero, 

obtaining 
 

dt)bvf(20
db
dc t∫

τ

−−==  (16) 

 
from which we get 
 

∫∫

∫

ττ

τ ==
vdtv

E
vdtv

vdtf
b

tt

t

  (17) 

 
where we have used equation (13) for E. Thus, the 
least-squares equivalent viscous force is 
 

∫
τ

==
vdtv

Evbvf
tv  (18)  

Now, the energy loss due to vf  is given by 
 

∫ ∫

∫
τ

τ

τ === E
vdtv

vdtvE
vdtfE

t

t

t
vv  (19) 

 
We see that the energy dissipated by the viscous force 

)t(fv  in the interval τ exactly the same as the original 

energy dissipated by the genera1 damping force )t(f . 

Therefore, the remaining non-viscous force ( vff − ) does 
not dissipate any energy, and is said to be orthogonal to 

)t(v  over the interval τ. This is expressed as 
 

∫
τ

=− 0vdt)ff( t
v  (20) 

 
For coulomb and structural damping mechanisms, this 

non-viscous force represents non-linear system behavior, 
and contains harmonics and inter-modulation products of 
the input excitation that have no velocity counter parts, and 
hence cannot dissipate energy. We should emphasize that 
the value of b generally depends upon the particular 
waveforms of v(t) and f(t) and hence varies with excitation 
level, and with the type of exciting signal. For example, the 

effective viscous damping factor may be different for 
random excitation than for sinusoidal excitation, even 
though the same rms (root-mean-square) signal level is used 
in both cases. This situation is common for all non-linear 
systems, and implies that any linear approximation is only 
valid for the particular conditions under which the 
approximation was originally determined. 
 

Other damping mechanisms besides coulomb and 
structural damping undoubtedly exist, particularly for high 
velocity airfoils, or if hydraulic or iron core magnetic 
sub-systems are included in the system being modeled. The 
previous result applies for any damping mechanism, and 
could also be used to linearly model stiffness or mass. 
 
 
Implications for Modal Analysis 

The object of modal analysis [1] is to obtain the natural 
frequency, damping factor, and geometrical mode shape of 
each of several modes of vibration, until we have adequately 
characterized the system behavior over some frequency 
band of interest. We assume a linear system for this modal 
representation, and if the system is somewhat non-linear, we 
generally want the best linear approximation to the actual 
system that we can obtain. Each mode can then be modeled 
at each point on a structure as a single degree-of-freedom 
resonator, having some natural frequency, and some 
damping factor, which are common to all points on the 
structure. 
 

In terms of the Laplace transform, we represent the thk  
complex mode of vibration by a function of the form 
 

*
k

*
k

k

k
k ps

A
ps

A)s(H
−

+
−

=  (21) 

 
where kp  is the “pole” (or singularity) location in the s-

plane, and kA  is called the “residue” of the pole. Natural 
frequency and the damping coefficient are obtained from the 
imaginary part and real part respectively, of kp . The 
resulting impulse response in the time domain is 
 

tp*
k

tp
kk

*
kk eAeA)t(h +=  (22) 

 
Each complex pole always has a conjugate mate, as 

indicated by the two terms in equations (21) and (22). 
 

When we measure the modal parameters of some physical 
structure, we obtain “best” estimates of kA  and kp  
(perhaps using a least-squares estimation procedure) so that 
the effects of non-linearities and noise are reduced as much 
as possible. Thus, no matter what damping mechanism is 
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involved, we will obtain a best linear estimate of the pole 
location kp , which will imply some equivalent viscous 
damping coefficient. 
 

However, we have seen that this viscous damping 
estimate will properly account for all energy loss in the 
system, so it doesn't matter what the actual damping 
mechanism is, as far as a linear representation of the system 
is concerned. This is not to say that non-linearities are 
unimportant, but their study is generally very difficult, and 
beyond the scope of present day practice in modal analysis. 
 
 
Summary and Conclusions 

Three commonly occurring damping mechanisms: (1) 
coulomb, (2) viscous, and (3) structural damping were 
identified and classified. We have seen that a coulomb 
damping force is independent of excitation magnitude, so a 
system with primarily coulomb damping will show a 
damping factor that decreases with stronger excitation. On 
the other hand, both viscous and structural damping forces 
are proportional to excitation so their associated damping 
factors will remain constant with excitation level. Indeed, it 
is nearly impossible to distinguish between viscous and 
structural damping mechanisms, without physically altering 
the structure. If the structure can be altered to raise the 
resonant frequencies, then the viscous damping factors will 
increase, while the structural damping factors will remain 
unchanged. 
 

In a very qualitative way, the regions that are dominated 
by each particular damping mechanism are as follows: 
 
 
 Low    High 
   Frequencies   Frequencies 

 

  Small Excitation Coulomb Viscous 
or Coulomb 

Large Excitation Structural Viscous 

 
 

Figure 4. Dominant Regions for each 
Damping Mechanism 

 
We concluded that coulomb and structural mechanisms 
imply non-linear system behavior, but that an equivalent 
viscous damping component can always be derived, which 
will account for all of the energy loss from the system. 
Thus, in measuring the modal vibration parameters for the 
linear motion of a system, we don't care what the detailed 
damping mechanism really is. 
 

It is shown in the two appendices that hereditary damping is 
a way of representing the composite energy loss of several 
closely coupled modes, and that the current practice of 
representing structural damping by introducing an 
imaginary stiffness is either not physically realizable, or else 
introduces new fictitious modes, but in either case, actually 
involves only viscous damping. 
 
 
APPENDIX A 
The Use of Imaginary Stiffness to Represent Structural 
Damping. 
 

Since structural damping force is proportional to 
displacement and independent of frequency, it seems logical 
to model this damping mechanism as a stiffness term in the 
system equations. It must however be imaginary to provide 
a 90-degree phase angle relative to the ordinary stiffness 
contribution, and hence have the appearance of a damping 
mechanism. 
 

This formulation results in differential system equations 
with complex coefficients in the time domain, implying a 
complex time domain solution, and a non-hermitian 
frequency spectrum. In the Laplace domain, this means that 
poles do not appear in conjugate pairs, but tend to appear as 
shown in Figure 5. 
 
 

 
 

Figure 5. Pole Locations for Non-Hermitian System 
 

It is possible to choose only the hermitian part of the 
spectrum, thus insuring a real time function, but this is 
accomplished only by adding an auxiliary pair of poles as 
shown in Figure 6. 
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Figure 6. Pole Locations for Hermitian Portion  
of Non-Hermitian System 

 
 

We see that this approach results in twice as many poles, 
and hence twice as many modes as actually exist. 
 

Thus, the use of imaginary stiffness either results in a 
physically unrealizable system, or else introduces 
superfluous modes into the system model. Furthermore, 
notice that we are still working with a linear system, in 
which a viscous damping coefficient is associated with each 
pole, so we really have added nothing new in the way of a 
damping mechanism. 
 

The fact that a viscous damping force is proportional to 
frequency is relatively unimportant, since the frequency 
range of interest for each mode of vibration is a narrow band 
centered around the resonant frequency, which is a constant 
value. If we want a model in which the damping factor is a 
constant value for all resonant frequencies, then the viscous 
model with all poles placed on a common radial line from 
the origin is a more straightforward approach. Finally, since 
displacement and velocity are proportional at any (constant) 
resonant frequency, we see that viscous force is proportional 
to displacement in any case. 
 

As a consequence of these arguments, there seems to be 
very little reason to model structural damping via an 
imaginary stiffness contribution. A much more 
straightforward approach is to simply model the linear part 
of structural damping with an equivalent viscous 
component, as we discuss in the body or this paper. 
 
 
APPENDIX B 
Hereditary Damping 
 

A.L. Klosterman [4] has introduced the concept of 
hereditary damping, in an attempt to account for damping 
mechanisms that are more general than simple viscous 

damping. Klosterman defined a heredity function )t(φ , and 
postulated that the damping force could be written as 
 

)t(v*)t(c)t(fh φ−=  (23) 
 
where the asterisk denotes the time domain convolution 
between )t(φ  and the velocity waveform. 
 

In the Laplace domain, we can write the damping force as 
 

)s(V)s(c)s(Fh φ−=  (24) 
 
where ,F ,h φ  and V are the respective Laplace 

transforms of ,,f h φ  and v. Obviously, viscous damping is 
obtained for the special case when 1)s( =φ , or 

)t()t( δ=φ , where )t(δ  is the unit delta function. 
 

In a sense, it appears that this represents a generalization 
of various linear damping mechanisms, but we will see that 
it is actually a way of describing the composite damping 
force due to several poles clustered together in some region 
of the s-plane. Each pole in the cluster displays ordinary 
viscous damping, so no new damping mechanisms are 
defined by this concept. 
 

If we take the Laplace transform of equation (1), 
replacing the viscous force with the hereditary force, we get 
 

( )( ) )s(F)s(XKsCsMs2 =+φ+  (25) 
 
where X and F are the respective Laplace transforms of x(t) 
and f(t). In this equation, M, C, K and φ  are matrices, and 
F and X are vectors. The pole locations are given by the 
values of s for which 
 

[ ] 0K)s(CsMsDet 2 =+φ+  (26) 
 

Let's assume that elements of )s(φ  are rational fractions 
in s. Then, we see that the total number of poles in the linear 
system can be greatly multiplied depending on the 
numerator and denominator of φ . Now, since Cs is 

generally small compared to 2Ms  and K. the basic pole 
locations remain relatively unchanged, no matter that form 

)s(φ  takes. For each pole corresponding to 1=φ , we 
have a cluster of poles in the same general vicinity for some 

1)s( ≠=φ , since only small perturbations on the original 

pole values are needed ( )2Msvia  to counteract the new 
contributions from )s(Cs φ . Thus, although hereditary 
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damping may be a useful concept, it does not represent any 
new damping mechanism and can be eliminated, at least in 
principle, by simply measuring the individual pole 
locations, along with the modal vectors associated with each 
pole. 
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