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Modal Analysis for the Connoisseur 
 

Ron Potter and Norm Olsen, Hewlett-Packard Co., Everett, Washington 

 
A practical model for the transfer matrix of a linear system 

must include representations of repeated poles (different modes 
having identical pole values), multiple poles (poles with 
multiplicity greater than unity), and non-symmetric impedance 
matrices (generally resulting from rotating components). This 
article describes measurements of all three of these properties on 
a very simple mechanical structure. 
 

There was a time when the results of a modal test comprised a 
tabulation of measured amplitudes for each modal vector, along 
with an estimate of the resonant frequency of each mode. Later, 
it became fashionable to display these mode shapes in animated 
form, and some attempts were made to estimate the damping 
coefficient of each mode. The early “Normal Mode” concept 
gave way to the view of conjugate pairs of complex modes. 
 

The ability to visualize modes of vibration is certainly helpful 
(and often fascinating), but the ultimate goal has always been an 
estimate of the transfer matrix for the structure, so that the 
motion for any arbitrary excitation vector could be accurately 
predicted. It is not enough to have a qualitative “feel” for the 
shape and frequency of each mode of vibration. Computer 
models of the structure are needed to optimize the design and to 
interface with models of other structures. 
 

There are many potential sources of error in estimating modal 
parameters of some physical systems. Numerous authors have 
discussed the effects of aliasing, leakage, noise, distortion, etc., 
and have studied various techniques to minimize errors from 
these effects. However, there are several basic assumptions upon 
which elementary modal theory is based that can easily be 
violated, and may introduce even larger errors than those 
mentioned. 
 

The following three enhancements need to be appended to 
elementary modal theory before accurate transfer matrices can 
be measured: 

 
a. repeated poles  
b. cascaded multiple poles  
c. non-symmetric transfer matrices. 

 
These enhancements will be discussed individually, and then a 

very simple example will be given of a structure that can exhibit 
all three characteristics. This structure has been built and tested, 
and the test results will be reviewed. 
 
 For reference to the theory and notation used in this article, 
refer to Ref. [1]. Some of the basic equations will be repeated 
here, for convenience. 

Review of Basic Modal Theory 
This theory is for linear systems, and the Laplace transforms 

of all quantities are assumed to exist. The theory will be 
developed in the Laplace domain, although the inverse transform 
can be used at any point to obtain an equivalent time function. 
 

Any linear mechanical system (including rotating components) 
can be described by the equation 
 

)s(F)s(X)s(B =  (1) 
 
where, F is a vector of applied forces, X is the resulting vector of 
displacements, and B is a matrix describing the system, 
comprising mass, stiffness, and damping matrices in the form of 
a matrix polynomial in s. The inverse of Eq. (1) is: 
 

)s(X)s(F)s(H =  (2) 
 
where, 
 

[ ] 1)s(B)s(H −=  (2a) 
 
is the transfer matrix for the system. This matrix allows the 
calculation of the displacement vector X for any applied force 
vector F. For rotating components, replace force by torque, and 
linear displacement by angular displacement. 
 

Each element of H(s) is a rational fraction in the Laplace 
variable s, and hence can be expressed in partial fraction form 
as, 
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Here, k is the index of pole locations, and v is the index of 
multiplicity. kva  is the residue matrix associated with each term 
in the expansion. 
 

In elementary modal theory, all kp are assumed to be unity, 

and kva is assumed to be a symmetric matrix of rank one. 
 
Equation (3) can be written in matrix form as, 

ΨΘΛ= − )s()s(H 1  (4) 
 
where, all s dependence resides in a quasi-diagonal matrix 
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)s(1−Λ . The columns of Θ  are the modal vectors, and the rows 
of Ψ  are the transposed bimodal vectors of the system, for a 
symmetric system, tΘ=Ψ . 
 

To illustrate the distinction between repeated poles and 
cascaded multiple poles, along with the effects of a 
nonsymmetrical system, an example of H(s) for 4 modes will be 
given next. There are two repeated poles, and a pole of 
multiplicity two. The transfer matrix can be written as: 
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Here, kΘ are the columns of Θ (modal vectors) and kΨ  are 
the rows of Ψ  (transposed bimodal vectors). The multiple pole 
is at as = , and the repeated poles are at bs = . Notice the 
triangular form of the sub-matrix of )s(1−Λ  that is associated 
with the multiple pole. The inverse of this sub-matrix is a 
version of the Jordan normal form of a matrix whose 
determinant has a multiple zero. For example: 
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There are several equivalent ways to express this triangular 
form, by rotating the triangle, or by changing signs on elements. 
The form indicated in Equations (5) and (6) has been chosen to 
preserve some degree of symmetry between the modal and 
bimodal vectors. If H(s) is written in expanded form, the result 
is: 
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 (7) 
The first two elements of Θ and Ψ appear in cross-product 

form as the residue matrix for the first order pole at as = , 
while only the second elements are used for the second order 
pole at as = . This is a convenient arrangement, especially for 

higher order multiplicities. Equations (5) or (7) will be used to 
illustrate the three concepts that form the theme of this article. 
 

Repeated Poles. Repeated poles are those with the same 
numerical value that are associated with different modal vectors. 
Any linear combination of such modal vectors is also a valid 
modal vector, so it is always possible to find a set of mutually 
orthogonal modal vectors that span the sub-space associated 
with a given pole value and order. 
 

The term “repeated” pole connotes the possibility of 
expressing the partial fraction expansion of the transfer function 
as the sum of terms having identical poles and multiplicities, but 
different residues. The same pole appears repeatedly in the 
expansion. 
 

Repeated poles are bound to occur in structures having some 
degree of spatial symmetry. This includes circles, squares, 
regular polygons, cylinders based on these shapes, and more 
symmetrical objects such as spheres. In addition, there are 
nonsymmetrical shapes that can have repeated poles, somewhat 
by chance. For example, imagine two structures that happen to 
have the same pole value, but are interconnected at nodal points 
of their respective mode shapes. If the mutual coupling is 
sufficiently small, the poles will be nearly identical, and a 
repeated pole model will be valid for all practical purposes. 
 

If a structure having repeated poles is excited, the resulting 
response will comprise some (unknown) linear combination of 
all modes in the group. Any transfer matrix model based upon a 
single mode will not predict the correct response if some other 
excitation vector is chosen, since some new (but still unknown) 
linear combination of modal vectors will result. Thus, any 
transfer matrix model that ignores repeated modes is doomed to 
failure if such modes exist in the frequency range of interest. 
 

The rank of the residue matrix for a repeated pole is equal to 
the number of different modes. The last term in Eq. (7) shows an 
example of two repeated poles at bs = . Note the rank two 
residue matrix. 
 

Multiple Poles. When the modal vectors associated with 
repeated poles become lightly coupled (meaning that pole values 
remain essentially unchanged), the possibility arises that the 
motion of one mode might act as a driving excitation for another 
mode. The resulting transfer function is a cascade of two simple 
poles, which is a pole of multiplicity two. 

 
Technically, coupled modes cannot have identical pole values, 

but practically it may be necessary to use the multiple pole 
model. The reason is that the modal vectors associated with a 
pair of simple poles become nearly co-linear when the pole 
values are similar. The representation of any vector in a direction 
orthogonal to either one of the pair will be very poor, and very 
sensitive to any errors in the data or in computer calculations. At 
some point, as two pole values converge, it is necessary to 
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switch from the single pole form to the multiple pole form, 
simply to preserve accuracy in the transfer matrix model. 
 

When an thn  order multiple pole is found, there will also be 
poles having all lower multiplicity values, as well. For example, 
in Eq. (7), the 2nd term is the 2nd order pole at as = , and the 
1st term gives the contribution of a first order pole at as = . 
Note that the rank of the residue matrix of the 1st term is two, 
while that for the second term is only unity (the term "residue" is 
used here to represent the numerator of any multiplicity pole, 
and not just that of a simple pole). Also, note that only two 
modal vectors are used for both terms, and that they are 
combined in a specific manner. This is insured by, the form of 
the )s(1−Λ  matrix illustrated in Eq. (5). The sum of the rank of 
the numerator and the multiplicity of the denominator is a 
constant for a given multiple pole. 
 

Multiple poles can only be identified, by inspecting the 
measured set of transfer functions. The shape of the multiple 
pole transfer characteristic is somewhat different than that of a 
simple pole. For example, there is a phase shift of n x 180° as an 

thn  order pole is passed along the frequency axis. The roll-off 
rate is also faster for higher order poles. In most measuring 
systems, it is the job of the curve fitter and root solver to identify 
multiple poles, and to determine the residue matrix elements for 
each pole of lower order (via the conversion from a rational 
fraction form to a partial fraction form, for example). 
 

In contrast to the case for repeated poles, it is not necessary to 
measure extra rows or columns of a multiple pole to determine 
the set of modal vectors, even though the rank of some residue 
matrices might be greater than unity. This is because of the 
required cross-structure between terms of a multiple pole model. 
For example, in Eq. (7), the vectors 2Θ  and t

2Ψ  can be 
obtained from the residue of the 2nd term alone. Then, given 
those two vectors, the residue of the first term can be used to 
calculate 1Θ and 1Ψ . 
 

However, as was true for repeated poles, it is always possible 
to find an orthogonal set of modal vectors for a multiple pole. 
The number of options is more restricted for the multiple pole 
than for a repeated pole, due to the built-in cross-structure. 
 

Whenever repeated poles exist, there is a good chance that a 
multiple pole can be found. When “symmetric” structures are 
slightly asymmetric, some small amount of coupling between 
modes is likely. Another small-coupling mechanism can be 
caused by a large impedance mismatch, as illustrated by the 
antenna on top of a battleship, where both structures share one 
pole value in common. If the battleship is excited at this 
frequency, the transfer function to the tip of the antenna will 
comprise a pole of multiplicity two. 
 

Even though repeated poles and multiple poles may coexist in 
a structure (at the same pole value), they are different concepts 
and enter into the transfer matrix model in different ways. They 
are also calculated from measured transfer functions in different 
ways. The representation of mode shapes of multiple poles is 
more sensitive to measurement errors than is the representation 
of repeated poles, but the consequences of an erroneous transfer 
matrix model are probably greater in the repeated pole case than 
for the multiple pole case. 
 

Non-symmetric Matrices. Equation (7) illustrates the form of 
a transfer matrix that is not symmetric. The modal vectors 
(columns of Θ ) are not the same as the bimodal vectors 
(columns of tΨ ) unless the system is symmetric. This implies 
that both rows and columns must be measured for each mode. 
All points on the structure must be excited to measure a row, and 
the motion of all points must be measured to determine a 
column. For a residue matrix of rank r, it is necessary to 
measure r rows and r columns. 
 

Since the equations for a pure gyroscope are anti-symmetric 
(see Appendix), it follows that any transfer matrix that is 
significantly influenced by rotating components will be non-
symmetric. This obviously includes a large proportion of the 
various structures of interest, so non-symmetric transfer matrices 
are difficult to avoid, in practice. As can be seen from Eq. (7), a 
non-symmetric transfer matrix based upon a symmetric model is 
simply not correct, and may be of little value in predicting 
system behavior. 
 
A Physical Example 

Figures 1 and 2 show a very simple structure that can have 
repeated poles, multiple poles, and a non-symmetric transfer 
matrix. The weights on the horizontal bar can be positioned 
anywhere along the bar outboard of the vertical springs. This 
configuration allows for the torsion mode about the y-axis to be 
tuned to have its resonant frequency below, above or the same as 
the resonant frequency of the bending mode in the z-direction. 
At the center of the horizontal bar a rotating element consisting 
of an instrument cooling fan was attached with its axis of 
rotation in the z-direction. With the rotating element stationary, 
the structure was tuned so that the torsion and bending modes 
had the same pole value. This produces a pair of repeated modes. 
 

For a small value of angular momentum zH  in the 
z-direction, the gyroscopic effect introduces a small amount of 
coupling between the two modes. If the bending mode is excited, 
the rotating component will, in turn, excite the torsional mode. 
The resulting composite transfer function between bending mode 
excitation and torsional mode motion will exhibit a second order 
pole. However, as indicated in Eq. (7), it is possible that both 
first and second order poles will occur, so some care is needed to 
avoid direct excitation of the first order component. This will 
allow the second order contribution to be seen more clearly. 
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Figure 1. Component diagram of test system. 

 

 
Figure 2. Dimensional diagram of test system. 

 
Since the rotating component has an anti-symmetric transfer 
characteristic (see Appendix), the entire structure will exhibit a 
non-symmetric transfer matrix, as long as the rotation is 
sufficiently rapid. For example, assume a positive excitation in 
the z-direction at node 2. This will eventually cause a positive 
angular rotation around the y-axis. In contrast, a positive torque 
applied about the y-axis will produce a bending motion in the 
negative z-direction. 
 

 
Figure 3. Transducer locations. 

 

 
Figure 4. Modes separated case: upper trace - driving point 

magnitude, location #1; lower trace – driving 
point magnitude, location #2. 

 
Once the basic structure was assembled, the shakers were 

attached through stingers to force transducers at force locations 
F1 and F2. A total of eight accelerometers were used; one at 
each driving point location and the remaining six along the 
horizontal bar (Figure 3). 

 
The gyro was simply an instrument cooling fan, which had a 

cast rotor construction with many blades. This device exhibited a 
reasonable gyroscopic effect for its size and weight. It remained 
attached to the structure during all the measurements. 
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Figure 5. Modes separated case: upper trace - driving point 

phase, location #1; lower trace - driving point phase, 
location #2. 

 

 
Figure 6. Modes separated case: reciprocity comparison – 

magnitude, location 2/1 versus 1/2. 
 

 The first set of measurements was made with the movable 
masses adjusted to an inboard position setting up the case where 
the first bending mode is lower in frequency than the first 
torsion. The gyro was not operating during this measurement 
sequence. 
 

The HP3565S multiple channel dynamic signal analysis 
system was used to make the measurements. All 16 frequency 
response functions were measured simultaneously using this 
system hardware and the HP VISTA signal processing software. 
This system provides the capability of performing the 

Multiple-Input Multiple-Output frequency response 
measurements using an algorithm that is an outgrowth of that 
discussed in References [2, 3, 4, and 5]. These frequency 
response measurements were made using uncorrelated burst 
random excitations on each shaker. 
 

Modes Well Separated. Figure 4 shows the two driving point 
frequency response functions with the cursors set to the 
approximate resonant frequencies of 5.8 and 5.97 Hz. The upper 
plot (trace A) is the frequency response at driving point location 
1 (the response at location 1 due to the force at location 1). The 
association between measurement and trace is shown via the 
matrix on the left side of the plot; with trace A always being the 
upper trace. The phase plots for the two driving points are shown 
in Figure 5. 
 

The next plot, Figure 6, shows the cross measurement between 
the two driving point locations, corresponding to the response at 
point 2 due to the force at point 1 and the response at point I due 
to the force at point 2. These two plots should be identical since 
reciprocity should be valid for this simple system. The 
corresponding phase plot is shown in Figure 7. The agreement is 
fairly good except for an absolute gain error caused by the low 
frequency characteristics of the transducers used. The transducer 
sensitivities measured at 100 Hz were used with the assumption 
that there were no gain or phase differences of significance in 
the measurement frequency range. As later verified, this 
assumption was incorrect. This first measurement configuration 
was primarily a reference to obtain confidence that the setup was 
correct and good measurements were possible. Curve fitting 
these results was straightforward and produced frequencies of 
5.806 and 5.966 Hz and damping factors of 0.196% and 0.364% 
respectively for the torsion and bending modes. 
 

Repeated Mode Case. The next set of measurements was 
made after the movable weights were repositioned to obtain the 
repeated pole case. Figure 8 shows the magnitude of the driving 
point measurements, and Figure 9 the phase plots (Trace A = 1/1 
and Trace B = 2/2). Figures 10 and 11 present the cross 
measurements between the two driving point locations (Trace A 
= 2/1 and Trace B = 1/ 2). Again, except for the 1 dB absolute 
gain error, the reciprocity check of these two measurements is 
very good in both magnitude and phase. 

 
As is typical of modal data that contains repeated poles (or 

modes), there is nothing obvious in the plotted data that makes 
this fact stand out. In just looking at the data, it appears to be 
what one would see if there were but a single mode in this 
frequency range. If the data were obtained with only a single 
shaker location there would be no method to determine that a 
repeated pole existed in this frequency range. This data set was 
obtained with two shaker locations, and by using techniques like 
Polyreference , the detection and characterization of a repeated 
pole can be accomplished.  The detection and characterization of 
a repeated pole can be accomplished.  
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Figure 7. Modes separated case: reciprocity comparison – 

phase, location 2/1 versus 1/2. 
 

 
Figure 8. Repeated mode case: upper trace - driving point 

magnitude, location #1; lower trace - driving point magnitude, 
location #2. 

 
 Using such a technique with this data set produced two modes 
with frequencies of 5.793 and 5.816Hz with damping factors of 
0.207% and 0.389% respectively. 

 
Non-symmetric Case. The physical configuration for this 

third set of measurements is identical to that for the repeated 
pole case, with the exception that the fan (gyro) was turned on 
and was allowed to run at its normal speed. One effect of the 
gyro is to couple the two modes. Figure 12 shows the two 
driving point measurements in magnitude form. Note that one 
observable effect of the gyro is to split the repeated pole into two  

 
Figure 9. Repeated mode case: upper trace - driving point 

phase, location #1; lower trace - driving point phase, 
location #2. 

 

 
Figure 10. Repeated mode case: reciprocity comparison – 

magnitude, location 2/1 versus 1/2. 
 
distinct resonant peaks. Figure 13 shows the phase plots of these 
driving point measurements. 

 
Comparing the cross measurements between the two driving 

points (Trace A = 2/1 and Trace B = 1/2) in Figure 14 reveals 
that this measurement fails the reciprocity relationship of a 
symmetric system (where these two measurements would look 
identical). The corresponding phase plots in Figure 15 also 
reveal different characteristics. 
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Figure 11. Repeated mode case: reciprocity comparison – 

phase, location 2/1 versus 1/2. 
 

 
Figure 12. Gyro effects on repeated mode case: upper trace – 

driving point magnitude, location #1; lower trace – 
driving point magnitude, location #2. 

 
In this system, it is no longer sufficient to measure one row or 
column of the frequency response matrix to estimate the entire 
matrix. One would need to measure both rows and columns to 
completely characterize the system. 

 
Multiple Poles. In the last example, the structure of the 

preceding examples was simplified by removing the horizontal 
bar, along with the weights and fan, leaving just the two vertical 
springs “isolated” from each other. This was done to eliminate 
any coupling via a unit multiplicity pole term in the transfer 
function between input force and output response. An effort was  

 
Figure 13. Gyro effects on repeated mode case: upper trace - 
driving point phase, location #1; lower trace - driving point 

phase, location #2. 
 

 
Figure 14. Gyro effects on repeated mode case: reciprocity 

comparison magnitude, location 2/1 versus 1/2. 
 

then made to tune each of these “separate” cantilevered beams to 
have the same frequency and damping. 

 
Having come reasonably close to achieving this, a frequency 

response measurement was made with the force at point 1 on one 
of the cantilevered beams and the response at point 2 on the 
other cantilevered beam. The only coupling between these two 
cantilevered beams is through the 2 inch thick aluminum base to 
which the beams are attached. This coupling is small, in that 
very little motion is seen on the second beam when exciting the 
first. The response of the second beam is due to a cascading or  
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Figure 15. Gyro effects on repeated mode case: reciprocity 

comparison phase, location 2/1 versus 1/2. 
 

 
Figure 16. Response of Beam 2 due to force at Beam 1. 

 
multiplication of the two individual modes. After averaging 
many burst random excitations (821), a reasonable frequency 
response function was obtained. 

 
Figure 16 shows the magnitude and phase of this frequency 
response function measurement. Note the 180° phase swing 
characteristic of the resonance. Figure 17 shows the complex 
plane or Nyquist format of the same measurement. For 
reference, Figure 18 is the driving point frequency response of 
the second beam by itself that was obtained during the tuning 
phase. These measurements were obtained with the HP3562A, 
two-channel dynamic signal analyzer. The curve fitter in the 
HP3562A was used on the measurement of Figure 16 in an 
automatic mode. Within some user specified upper limit on the  

 
Figure 17 Complex plane plot of response of Beam 2 due to 

force at Beam 1. 
 

 
Figure 18. Driving point measurement of Beam 2. 

 
number of poles and zeros, this curve fitter will use both the 
frequency response function and the coherence function to 
determine both the number and values of the poles and zeros in 
the measurements. 8  With an upper limit of 10 poles and 10  
zeros the table in Figure 19 gives the curve fit results. This 
shows two poles very close together, but not a pole of 
multiplicity of 2. If the form of these, pole/zero curve fit results 
are converted to pole/residue form the results are shown in 
Figure 20.  
 
From a modal analysis point of view the pole/residue form is 
needed in order to determine the mode shape. Note that, the two 
residues are almost exactly opposite in sign to each other. As the 
two poles get closer and closer together these two residues will 
get larger, with opposite sign but nearly the same magnitude. 
Because of numerical problems, at some point it would be better 
to use a multiple pole formulation instead of two almost 
identical single poles. 
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Figure 19. Curve fit of Figure 16 data. 

 

 
Figure 20. Conversion of pole/zero form of 

Figure 19 to pole/residue form. 
 

If the “equivalent” multiple pole is chosen as the arithmetic 
mean between the two poles in Figure 20, then the residues for 
the first order part are 4109967.1j −×± and the residues for 

the second order part are 4105737.28 −×−  
4105362.5j −×±  . 

 
Summary and Conclusions 

Any practical model for a transfer matrix of a linear system 
must have the capability to represent repeated poles, multiple 
poles, and non-symmetric system impedance elements. All three 
of these characteristics are likely to occur in many structures of 
interest, and in those cases, the transfer matrix model will be of 
little value without these features 
 

As an illustration of these concepts, a very simple mechanical 
structure is shown that includes all three characteristics. This 
structure has been built and tested, and the test results are 
included in this article. The simplicity of this structure probably 

implies that these properties are relatively common in more 
complicated structures. 
 

It should also be apparent that all transducers must be 
carefully calibrated at all frequencies, in order to obtain the 
correct modal vector components. A complete set of calibration 
data should be obtained before and after the test to insure 
reliable data. 
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Appendix - Gyroscopic Impedance Matrix 
 

Assume a z-direction spin axis with angular momentum H (For an 
inertially symmetrical rotor spinning at a constant speed zz IH, ω=ω  
where =I  moment of inertia about an in plane axis.). Since H is 
conserved, an infinitesimal perturbation in angle Θd  will cause 

Θ−= HddH  perpendicular to H. If this occurs in a time interval dt, 
then: 

( ) THdt/dHdt/dH =ω−=Θ−=  (torque equation) 
For example, a component of torque applied about the x-axis results in 
an angular velocity yω  about the y-axis. A y-axis torque component 

results in a negative x-axis angular velocity. Thus: 9  
zyyz HTHT ω−=ω=  

In matrix form, these equations can be written as: 
WZT g= , where 









−
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ω
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Note that the gyroscopic impedance gZ is anti-symmetric. This will 
eliminate symmetric matrices when significant rotating components are 
present. 

In practice, there are generally both source and load impedances 
connected to the gyroscope, so the torque equations can be generalized 
to: 

yxxx HZT ω+ω=  

,HZT xyyy ω−ω=  or 

,ZWT =  where 
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The inverse expression is: 
TZW 1−= , where 
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Assume that the external applied torque is in the x-direction, so that: 

0Ty = , then 

2
yx

xy
x HZZ

TZ
+

=ω , (input angular velocity) 

2
yx

x
y HZZ

HT
+

=ω , (output angular velocity) 

y

2

x
x

x
in Z

HZTZ +=
ω

= , (input impedance) 

yxy Z/H/ =ωω , (angular velocity transfer function) 

Notice that the gyroscope inverts the load impedance yZ , and adds a 

portion of that inverse to the original xZ . The angular transfer function 

is also proportional to yZ/1 , and is proportional to the gyroscope 
angular momentum H, whereas the input impedance transfer function is 

proportional to 2H . 
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