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ABSTRACT 

This paper was originally presented at the first IMAC Con-
ference in 1982 [6].  Its abstract was a follows, 

This is a new formulation that overcomes many of the nu-
merical analysis problems associated with an old least 
squared error parameter estimation technique.  Overcoming 
these problems has made this technique feasible for imple-
mentation on mini-computer based measurement systems. 

This technique is not only useful in modal analysis applica-
tions for identifying the modal parameters of structures, but 
it can also be used for identifying poles, zeros and reso-
nances of combined electro-mechanical servo-systems. 

Our early development of this method took place in the late 
1970’s, and it was first implemented (as an SDOF fitter) in a 
modal testing instrument, the Hewlett Packard 5423A Struc-
tural Dynamics Analyzer.  Since then it has been used in a 
variety of other analyzers and modal analysis software 
packages (as an MDOF & Global fitter), and is still widely 
used today. 

In this paper, we will review other IMAC papers that have 
been written about this method during the past twenty years.  
We will also discuss remaining curve fitting challenges and 
opportunities for further research. 

INTRODUCTION 

We begin by reiterating the main points of our original pa-
per. Excerpts from it are italicized. 

This paper presents the results of an algorithm development 
effort that was begun back in 1976.  At that time, we were 
looking for a better method for doing curve fitting in a mini-
computer based modal analysis system.  This type of system 
is used to make a series of FRF measurements on a struc-
ture, and then perform curve fitting on these measurements 
to identify the damped natural frequencies, damping, and 
mode shapes of the predominant modes of vibration of the 
structure. 

The three main requirements for a good curve fitting algo-
rithm in a measurement system are 1) execution speed, 2) 
numerical stability, and 3) ease of use. 

Complex Exponential 

A well-known curve fitting algorithm (called the Complex 
Exponential) had already undergone much development by 
the mid 1970’s, and was to remain the basis for many fur-
ther developments as a time-domain method.  We too had 
experimented with the Complex Exponential, and made the 
following comments about it, 

Previous to this development effort, we had experimented 
with a well-known curve fitting algorithm called the Com-
plex Exponential, or Prony algorithm. This algorithm has 
undergone a lot of refinement ([2], [3]) and is computation-
ally very efficient and numerically stable in 16-bit machines.  
However, it curve fits the impulse response function instead 
of the FRF.  The impulse response can be obtained by taking 
the Inverse Fourier transform of the FRF.  When the FFT is 
used to obtain the impulse response from an FRF measure-
ment, a potentially serious error can occur, which is called 
wrap around error, or time domain leakage. This error is 
caused by the truncated form (i.e. limited frequency range) 
of the FRF measurement, and distorts the impulse response 
as shown in Figure 1. 

Hence, we sought to develop an algorithm with some of the 
same characteristics as the complex exponential method, 
(e.g., it is easy to use along with being numerically stable), 
but that curve fits the FRF measurement data directly in the 
frequency domain. 

 
FIGURE 1. Impulse Response with Leakage. 

Time Domain Polyreference Method 

In the same year of our original paper 1982, another time 
domain curve fitting method called Time Domain Polyrefer-
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ence, was introduced.  It is probably the most widely used 
curve fitting method of all [11].  This method, which is an 
extension of the Complex Exponential method, can be ap-
plied to a multiple reference set of Impulse Response Func-
tions.  More technical papers have been written about it than 
any other method. 

Ibrahim Time Domain Method 

Another very popular time domain curve fitting method was 
introduced in 1977 [9], several years prior to our original 
paper. It became know as the Ibrahim Time Domain meth-
od. This method has been widely used by the aerospace 
community.  

Iterative Frequency Domain Curve Fitting 

Prior to the RFP development, we had also gained some 
experience with an iterative frequency domain curve fitting 
algorithm, described in [1] and implemented in a commer-
cially available modal testing system (Option 402 to the 
Hewlett Packard 5451B Fourier Analyzer System).  This 
package was first sold in 1974.   

The difficulty with any iterative technique is that it may not 
converge on a usable solution.  The attraction of the RFP 
algorithm was that is was not iterative, 

If it is assumed that the frequency response measurement is 
taken from a linear, second order dynamical system, then the 
measurement can be represented as a ratio of two polyno-
mials, as shown in Figure 2. 
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FIGURE 2. Analytical Forms of the FRF. 

In the process of curve fitting this analytical form to the 
measurement data, the unknown coefficients of both the nu-
merator and denominator polynomials, (ak, k=0,…,m) 

and (bk, k=0,…,n), are determined.  It is shown later that 
this curve fitting can be done in a least squared error sense 
by solving a set of linear equations, for the coefficients. 

Ill Conditioned Equations 

Our original introduction to the RFP curve fitting method 
came from reference [5].  In it, the authors presented the 
solution equations, but concluded that they were ill condi-
tioned and could not be solved by computer, even for simple 
cases.  We also verified that this was indeed the case in our 
original implementation of the algorithm. 

Orthogonal Polynomials 

A major breakthrough occurred when we reformulated the 
curve fitting problem in terms of orthogonal polynomials, as 
prescribed by Forsythe in reference [5].  This straightfor-
ward application of Forsythe polynomials, together with 
further computational efficiencies due to the symmetrical 
properties of the FRF, yielded solution equations that could 
easily be solved in a mini-computer.  These efficiencies 
were presented in [6].   

But most of all, the solution equations using orthogonal pol-
ynomials were numerically stable, exhibiting a dramatic 
improvement over the use of ordinary polynomials. Fur-
thermore, the problem size was essentially “cut in half” by 
the use of orthogonal polynomials, which uncoupled the 
solution equations for the denominator polynomial coeffi-
cients from those for the numerator coefficients.  

When exciting modes of vibration in a structure, or in mak-
ing measurements in a servo-loop, the denominators of all 
the measurements should contain the same characteristic 
polynomial.  In the case of structural resonances, this is 
equivalent to saying that modal frequencies and damping 
are the same, no matter where they are measured on the 
structure. Alternatively, the poles of a servo-loop can be 
identified from measurements between any two points in the 
loop. 

As pointed out earlier, one of the advantages of formulating 
the solution equations in terms of orthogonal polynomials is 
that the unknown characteristic polynomial coefficients {D} 
can be determined independently of the numerator coeffi-
cients {C}.  

Global Curve Fitting 

Having uncoupled the solution equations through the use of 
orthogonal polynomials, it was clear that a two-step global 
curve fitting approach could be implemented.  First, the 
coefficients of the denominator (or characteristic) polyno-
mial are estimated by curve fitting multiple FRF measure-
ments.   

Since ideally, all FRFs measured from the same structure 
should have the same denominator, a better estimate of the 
characteristic polynomial can be obtained by curve fitting 
all of the measured FRFs.  The roots of this polynomial are 
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the modal frequencies & damping, which are global proper-
ties of the structure. 

Then, a second curve fitting step is performed, where the 
numerator polynomial coefficients are estimated by curve 
fitting each FRF by itself.  The numerator polynomial coef-
ficients are then used in a numerical partial fraction expan-
sion to yield the residue (mode shape component) for each 
mode and each FRF. 

In references [7] (1985) & [8] (1986), we presented all of 
the details of these two steps of global curve fitting using 
the RFP method. 

Compensation for Out-of-Band Resonances 

Another important issue with the use of any curve fitter is 
how to compensate the residual effects of out-of-band 
modes.  Out-of-band effects can “contaminate” the FRF data 
it two ways, as explained below, 

FRF measurements are always made over a limited frequen-
cy range by exciting the structure or system with some 
broad band signal.  As a consequence, the measurements 
will typically contain the residual effects of resonances, 
which lie outside of the measurement frequency range.  In 
addition, we normally curve fit the measurement data only 
in a more limited frequency range surrounding the reso-
nance peaks.  Hence, to give accurate results, all curve fit-
ters must somehow compensate for the residual effects of 
resonances, which lie outside of the curve fitting frequency 
range. 

Regardless of whether a curve fitting method uses time do-
main or frequency domain data, the residual effects of out-
of-band modes must be dealt with.  The RFP method offered 
a unique advantage that was not available with the Complex 
Exponential method, for instance. 

With this curve fitter, out-of-band effects can be approximat-
ed by specifying additional terms for either the numerator 
or the denominator polynomial.  

In the original paper [1], we explored the uses of both extra 
numerator and extra denominator terms to compensate for 
out-of-band effects.  Adding extra denominator terms is the 
same as adding extra modes to the curve fitting model or 
solution equations. 

The Complex Exponential method almost always requires 
the use of extra modes in its curve fitting equations in order 
to obtain valid results.  The difficulty with using extra 
modes in the model is that the results must then be sorted 
out, and the “good” modes (with valid parameter estimates) 
separated from the “computational” modes (with invalid 
estimates).  The frequency & damping Stability diagram 
was developed for this purpose.  A Stability diagram is es-
sentially a listing of frequency & damping estimates, for a 
single mode model, then two modes, three modes, and so 
on.  The user must then pick valid parameter estimates from 
the diagram. 

Extra Numerator Terms 

We discovered however, that the addition of extra numerator 
polynomial terms was a more practical way to account for 
the residual effects of out-of-band modes.  These extra terms 
have commonly been referred to as “inertial restraint” and 
“residual flexibility”.   

The use of these extra terms does not increase the order of 
the characteristic polynomial. Hence, there are no extra 
“computational” modes in the results. Furthermore, the extra 
numerator polynomial terms are merely “thrown away” by 
the numerical partial fraction expansion; so valid residue 
estimates for the modes in the model can be obtained.  

In the original paper, this point was illustrated with an ex-
ample that included two closely coupled modes (at 10 & 12 
Hz) and a third out-of-band mode (at 60 Hz).  We conclud-
ed, 

It is clear that the parameters of the first two modes cannot 
be identified without some form of compensation for the 
third mode.  Again, we can attempt to compensate for the 
effects of the third out-of-band mode by adding more terms 
to the numerator polynomial. Figure 3 also shows the re-
sults of this curve fit with n=4, m=7.  In this case, the ad-
ditional numerator terms do an excellent job of compensat-
ing for the third mode. 

Finally, we can also compensate for the third out-of-band 
made by adding another DOF to the denominator.  Figure 3 
shows the results of the curve fit with n=6, m=5.  Notice 
that this fit function is, as expected, a perfect match to the 
idealized FRF measurement, and that even the 60 Hz mode 
which lies far outside the curve fitting band is also correctly 
identified. 

Even though for this simple case, adding a third mode to the 
model worked equally as well as adding extra numerator 
polynomial terms, in general one would not know how 
many modes lie outside the curve fitting band.  Furthermore, 
there is not control in the RFP method over where the mode 
frequency estimates will lie.  Computational modes can lie 
inside the curve fitting band and make it difficult to decide 
whether or not they are computational without the aid of a 
Stability diagram or some other method. 

In general, we have found that the over-specification of the 
numerator polynomial order (using from 2 to 8 extra terms) 
is a much better way to compensate for out-of-band effects 
than using extra computational modes. 
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FIGURE 3. Out-Of-Band Compensation. 

FURTHER WORK WITH THE RFP METHOD 

We surveyed the past 19 years of IMAC proceedings for 
other papers that referenced the RFP method.  We found a 
total of 33 papers in the IMAC proceedings.  (We have also 
included a Sound & Vibration magazine article that ad-
dressed numerical issues related to the RFP.)  

We acknowledge that other technical journals & conference 
proceedings could contain additional information about the 
RFP method.  Due to time constraints however, we limited 
our search to the IMAC proceedings. 

The papers we surveyed are organized by topic and year of 
publication in the References section. 

Some papers have extended its usefulness by introduced 
improvements to the method.  Some papers merely referred 
the RFP as a modal parameter estimation method.  Some 
compared the RFP with other curve fitting methods in sur-
vey papers.  

Extending the RFP Method  

We found 21 papers that proposed ways to extend the use-
fulness of the RPF method.  Following is a brief review of 
the improvements we found in some of these papers. 

Chebycheff Polynomials 

Several papers [14], [16] & [24] used Chebycheff polyno-
mials instead of the Forsythe polynomials that we used.  
These authors found better computational efficiency and 
improved numerical accuracy with the Chebycheff polyno-
mials.   

Reference [24] also found that solving for the roots of the 
characteristic equation in terms of orthogonal polynomials 
permitted solutions of much higher order characteristic pol-
ynomials. Solutions of more than 10 modes at a time were 
achievable.  This is difficult if not possible when the or-
thogonal are converted to ordinary polynomials before root 
solving,  

Non-Uniform Frequency Axis 

Several authors [14], [19] & [23] also pointed out that the 
RFP method can be formulated, and works equally well 
with non-uniformly space frequency axis data, such as log 
frequency data.  Since the RFP works best using small fre-
quency bands of FRF data surrounding resonance peaks, its 
use on log axis data is a logical extension of this capability. 

Weighting Functions 

Several authors [14], [22] & [23] discussed the influence of 
bias errors in the FRF data and its effect on the accuracy of 
modal parameter estimates.  One paper [14] proposed using 
the Coherence function to construct weighting functions.  
This emphasizes data surrounding resonance peaks, and 
ignores data where the Coherence values are low. 

The authors of [22] implemented the RFP using a non-linear 
least squared error function.  This results in a set of non-
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linear solution equations that must be solved using iterative 
techniques, but can remove the effects of bias errors. 

Global Curve Fitting 

Several authors [21], [23], [26] discussed the use of the RFP 
for global curve fitting of multiple FRFs to obtain frequency 
& damping estimates.  Although we too showed how to 
perform global fitting in our original paper by taking ad-
vantage of the uncoupled solution equations, we didn’t give 
the details until our later 1985 & 1986 papers [7] & [8].  

Multiple Reference Curve Fitting 

Several papers [18], [19], [20] have extended the RFP to 
curve fitting of a multiple reference set of FRFs.  Multiple 
reference curve fitting was made popular by the time do-
main Polyreference method, discussed earlier.  A multiple 
reference set of FRFs is required in order to correctly identi-
fy closely coupled modes and repeated roots. 

Two or more modes are closely coupled if they are repre-
sented by only one resonance peak in the FRFs.  Repeated 
roots are two or more modes with the same modal frequen-
cy, but different mode shapes. 

Mode Indicator Functions 

Some authors [29], [31] introduced the idea of using the 
RFP together with a mode indicator function. Two types of 
mode indicators are popular; The Multivariate Mode Indica-
tor (MMIF), and the Complex Mode Indicator function 
(CMIF). 

These mode indicator functions are useful for two reasons;  

1. They indicate how many modes are present in a fre-
quency band, thus providing an estimate of the correct 
curve fitting model size. 

2. They provide modal participation factors that are used 
to weight a multiple reference set of FRFs during curve 
fitting. 

Both of these mode indicators have been effectively used 
with the RFP for finding the modal parameters of closely 
coupled modes and repeated roots [12], [13]. 

CURVE FITTING SURVEY PAPERS 

We found 7 papers in the IMAC proceeding that surveyed 
curve fitting methods.  These surveys cover a time span 
from 1985 to 1997.  All of them reference the RFP method.  
It is also referred to as the OP (orthogonal polynomial) or 
the MRF (modified rational fraction) method in these and 
other papers. 

Generally speaking, all MDOF (multiple mode) curve fitting 
methods can be classified as either time domain, based on 
the Complex Exponential, or frequency domain, based on 
either the partial fraction form or the rational fraction form 
of the FRF (See Figure 2).  Following this distinction, the 
solution algorithms are either linear, providing one solution, 

or non-linear and iterative, providing a series of improving 
solutions. 

Global curve fitting methods divide the curve fitting process 
into two steps, obtaining modal frequency & damping esti-
mates in the first curve fitting step, followed by modal resi-
due estimates in a second step. 

Multiple reference (or Polyreference) methods extend global 
curve fitting by utilizing modal participation factors to 
weight each reference of FRF data so that the parameters of 
each mode are estimated using the reference where it is 
most strongly defined. 

GOOD MEASUREMENTS – THE KEY TO CURVE 
FITTING SUCCESS 

The main topic of this article has been applications of and 
improvements to the RFP curve fitting technique over the 
last 20 years. However the key to success using this or any 
other curve fitting technique lies in the quality of the exper-
imental data derived from the test structure. The age old 
expression “garbage-in-garbage-out”, is truly applicable 
when curve fitting FRF measurements. 

During the development of the RFP method, its first test 
was to determine how well it worked on FRFs that were 
generated analytically, in other words “perfect” measure-
ments.  Obviously, if the algorithm under development can-
not produce accurate results using a “perfect” FRF, there 
would be no need to use it on measurements from a real 
structure.  

We are still amazed how accurate the RFP method is when 
used on analytically generated FRFs. Even when used on a 
small frequency range of the FRF data, the RFP still yields 
extremely accurate modal parameter estimates. This is gen-
erally true for most curve fitting methods used in commer-
cially available Modal Analysis systems today.  

However, FRF measurements from real structures are usual-
ly far from “perfect” FRFs, and here in lies the difficulty 
with the curve fitting process. There is a multitude of rea-
sons why we don’t or can’t make accurate FRF measure-
ments that will easily yield meaningful modal parameters. 

Measurement problems start with the assumptions, which 
the curve fitting algorithms are based on, regarding the dy-
namic behavior of the test structure. Measurement problems 
are further compounded when non-perfect transducers are 
used to measure the two signals used to calculate FRFs, 
namely the excitation force (input) and response motion 
(output) signals. 

Furthermore, the type of excitation used to measure FRFs 
and how the test structure is mounted can many times affect 
the quality of the measurements. Finally, one of the major 
influences on an accurate FRF measurement is the meas-
urement setup of the data acquisition system or spectrum 
analyzer. 
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Structural Dynamics Assumptions 

All curve fitting algorithms are based upon a mathematical 
model for the dynamics of the test structure. An analytical 
formula for an FRF is developed and used to derive the 
curve fitting algorithm.  

Typical assumptions that are made about the dynamics of 
the test structure are: 

 Linear, 2nd Order Differential Equations of Motion 

 Reciprocity 

 Time Invariance 

Structures or systems that satisfy the above assumptions can 
yield FRF measurements that can be curve fit using most 
curve fitting algorithms. Any violations of the above as-
sumptions will lead to curve fitting difficulties and errors in 
the resulting modal parameters. 

Linearity 

Perhaps the linearity assumption is violated most often 
when testing real structures. The most common type of non-
linearity (i.e. the structure is not linear) is associated with a 
structure that has hardening or softening stiffness (spring) 
mechanisms. The response of these structures depends on 
the excitation level used to measure the FRFs.  

Non-linear structures are problematic because they don’t 
exhibit classical modes of vibration. Modes of vibration are 
only defined for linear structures. From a structural dy-
namics point of view, a non-linear structure can be thought 
of as a family of piecewise linear systems, with a different 
linear system for each RMS excitation level.  

Varying Force Levels 

When testing non-linear structures, the excitation technique 
used is critical for measuring repeatable and pseudo-linear 
FRF measurements.  Because of the lack of control of the 
force level during the measurement process, impact (ham-
mer) testing is one of the worst excitation techniques for 
measuring the FRFs of non-linear structures.   

When the excitation level is difficult to control during the 
averaging process (or from one measurement to the next), 
FRF measurements made on a non-linear structure may 
change with the excitation level.  Consequently, curve-
fitting techniques cannot be applied to a set of FRFs taken 
from a non-linear structure using varying force levels.  
Many other types of non-linearity’s can exist in structures, 
all of which will cause difficulties when applying curve-
fitting techniques that assume the FRFs are from a linear 
structure.  

Testing For Non-Linearity 

Several different tests can be used to determine whether or 
not a structure has non-linear behavior.  One straightforward 
test is to measure the Coherence function (γ2) along with the 
FRF measurement.  The Coherence is a direct measure of 

how linearly related the excitation is to the structural re-
sponse.  

When making the first few averages during an impact test, 
use a small amount of force. Then on the last average, in-
crease the force level.  If the structure exhibits a load de-
pendent non-linearity, the Coherence will dramatically de-
crease in value in the frequency ranges where non-linear 
behavior occurs.   

2nd Order Equations & Reciprocity 

Most modal testing assumes that the dynamics of the struc-
ture can be modeled using 2nd order differential equations 
with symmetrical mass, damping, & stiffness matrices.  The 
reciprocity assumption also follows from the symmetry of 
the matrices.   

An FRF is measured between an excitation DOF (point & 
direction) and a response DOF.  Reciprocity also means that 
an FRF measured between an excitation DOF A and a re-
sponse DOF B is identical to the FRF measured between 
excitation DOF B and response DOF A. 

Time Invariance 

Finally, the assumption of time invariant behavior can many 
times be easily controlled.  For example, if the structure 
under test changes dynamically with temperature or humidi-
ty, these parameters can often be controlled during a test. 

Time variance can be a bigger problem for structures that 
change over time due to mass changes, such as a missile in 
flight where the mass changes as fuel is expended.  Time 
varying structures have to be treated as a family of struc-
tures during testing, each one having its own steady state 
dynamical properties. 

Transducers 

FRF measurements are made using a wide variety of differ-
ent transducer types.  The excitation of a structure is gener-
ally measured with a load cell that measures force.  The 
response due to the excitation can be measured using either 
an acceleration, velocity or displacement transducer, or a 
combination of motion transducers.   

All of these transducers convert a physical quantity (force, 
acceleration, velocity or displacement) to a voltage that is 
measured with a data acquisition (front end) system.  Unfor-
tunately, no transducer is perfect.  All transducers have limi-
tations and create errors, which are influenced by the fol-
lowing factors: 

 Linearity 

 Flatness of Frequency Response 

 Sensitivity 

 Dynamic Range 

 Transverse Sensitivity 
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Using transducers that are inappropriate can result in errors 
in the FRF measurements.  These errors in turn cause curve 
fitting difficulties, which usually cause errors in the final 
results, the modal parameters estimates [52], [53], [54]. 

Excitation & Response 

In order to calculate FRFs, the structure must be excited 
with a measurable force.  The type of excitation depends on 
the type of structure being tested.  If a structure is linear, the 
type of excitation is not critical.   

However, when testing a non-linear structure, the excitation 
method can dramatically affect the FRF measurements.  The 
worst method for exciting a load non-linear structure is 
impacting it, as previously discussed.  Shaker excitation 
using a random or burst random signal is better suited for 
testing this type of non-linear structure.   

The locations of the excitation & response measurement 
DOFs are directly related to the dynamical properties (mod-
al parameters) of a structure.  Excitation close to a mode 
shape nodal point will result in a lower level response for 
the mode in question in all FRFs.  Conversely, if a (fixed) 
reference response is used, transducer placement close to 
mode shape nodal point will also result in a lower response 
level for the mode in question in all FRFs, [55], [56], [57], 
[58]. 

Analyzer Setup 

One of the biggest sources of error in measuring FRFs is 
improper or sub-optimal analyzer setup.  Selection of the 
appropriate signal-processing windows is a common source 
of error.  Signal processing windows are either overlooked 
altogether, or the wrong choice is made. For example, the 
common mistake of using a Hanning window on both the 
excitation and response signals during an impact test results 
in extremely distorted FRF measurements. 

Leakage 

Signal processing windows are used to minimize the leak-
age effects that occur when processing signals that don’t 
meet the assumptions of the FFT algorithm.  The following 
types of signals meet these assumptions: 

 Periodic in the sampling window 

 Completely contained in the sampling window 

If your test signals are not periodic or completely contained 
in the sampling window (the time domain record of sam-
ples), then leakage errors will occur. These errors can affect 
both the frequency and amplitude of the spectrum.   

Most FFT analyzers contain signal processing windows that 
are designed to minimize the effects of leakage.  Even when 
the appropriate window is chosen however, the resulting 
FRFs will still contain some amount of error due to leakage.  
Leakage effects add distortion to the FRF and make it ap-
pear non-linear.  These non-linear effects will cause curve 
fitting difficulties just as if the structure itself is non-linear. 

Leakage Free Signals 

The most effective way to make good FRF measurements is 
to use excitation signals that satisfy the assumptions listed 
above, so that the FFT will correctly transform them without 
leakage errors.  Of course, both the excitation and response 
signals must comply with the above assumptions.   

Transient Testing 

In general, transient signals can be acquired so that both the 
excitation and response are completely contained within the 
sampling window.  The analyzer can always be setup so that 
both the transient excitation and corresponding response 
signals are leakage free.  In this case the analyzer would be 
setup to use no window.  This is also refereed to as a Uni-
form, Rectangular or Boxcar window. If done properly, 
hammer (Impact) testing can yield FRF measurements de-
void of any distortion or non-linear effects. [56], [59], [60]. 

Shaker Signals 

The two most popular excitation signals used for shaker 
testing are random and sine. Again, to obtain leakage free 
FRF measurements, these signals (and their corresponding 
responses) must be either periodic or completely contained 
in the sampling window.  

Two special types of random and sine signals that are com-
monly used are Burst Random and Burst Chirp.  Burst Ran-
dom is the same as a pure random (constantly changing) 
signal, but it is “turned off” prior to the end of the sampling 
window.  This allows the structural response signal to decay 
to zero before the end of the sampling window.   Therefore, 
both the excitation and response signals are completely con-
tained in the sampling window. 

Burst Chirp is a rapidly sweeping sine wave (chirp) signal 
that is setup in the analyzer to sweep over the frequency 
range of the FRF measurements.  Burst Chirp is also “turned 
off” prior to end of the sampling window.  This allows both 
the acquired force and response signals to be completely 
contained within the sampling window. Consequently, the 
resulting FRFs are leakage free. 

Setting Up the Test Structure 

When setting up the test structure, the first consideration 
usually faced is the boundary conditions imposed on the test 
structure.  Boundary conditions are dictated by the purpose 
of the test.  Will the results be used to verify a Finite Ele-
ment Model, in which case "free-free" boundary conditions 
are used, or is the structure to be tested under “field condi-
tions”, so that a noise or vibration problem is recreated? 

In general, boundary conditions will affect the dynamics of 
a structure, and hence its modes.  Care should be taken not 
to introduce or excite any non-linearities in the structure by 
the imposed boundary conditions.  Many structures have 
rattles (loose joints) that get excited when the excitation 
force is applied.  These rattles can show up in the FRFs as 
noise or non-linear effects.  
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Shaker Testing 

Shaker testing presents additional challenges when setting 
up the test structure.  Not only must the shaker be attached 
to the structure, but the force that the shaker imparts to the 
structure must also be measured.  Force is typically meas-
ured with a load cell.   

A load cell only measures force in one direction, along its 
sensitive axis.  To measure the force imparted to the struc-
ture, the load cell should be attached directly to the surface 
of the structure, and the shaker attached to the load cell in a 
manner that only imparts force through the sensitive axis of 
the load cell.  This is usually accomplished by using a 
“stinger” or “quill”, a slender rod that will support only axi-
al loads. 

If any unmeasured shear, bending, or torsional forces are 
imparted to the structure, the resulting FRF measurements 
are no longer the result of the measured axial force, but of 
multiple forces.  Processing these measurements will once 
again lead to curve fitting difficulties and errors in the mod-
al parameters. 

CONCLUSIONS 

The advent of the FFT algorithm in the late 1960’s, and its 
implementation in digital test systems in the early 1970’s 
has made the acquisition of vibration data and the calcula-
tion of FRF measurements fast and economical. During the 
past 20 years, a lot of research effort has been devoted to 
curve fitting algorithms for estimating modal parameters 
from experimental FRF data.   

Our original paper (with the title of this paper) was present-
ed at the first IMAC conference in 1982.  Our paper docu-
mented the results of development work that was carried out 
in the late 1970’s at the Hewlett Packard Co, and also in the 
early 1980’s at Structural Measurement Systems. 

Since then, we have implemented the RFP method in a vari-
ety of commercial modal analysis products, at Hewlett 
Packard, SMS, & Vibrant Technology.  Others have also 
implemented it in their modal analysis packages [34], [35]. 
We have found the RFP to be a fast, relatively accurate, and 
reliable curve fitting method that is suitable for general use. 

For this paper, we surveyed only the proceedings of the past 
19 IMAC conferences, and found over 40 papers that refer-
enced the RFP method.  We found over 20 papers that ex-
tended the method, and added improvements to it.  

Finally, since the quality of experimental modal parameter 
estimates depends so heavily on the quality of the FRF 
measurements used for curve fitting, we included some of 
our experience (gained over the past 20 years) making FRF 
measurements.  Inaccurate FRF measurements can result for 
a multitude of reasons.  We included brief discussions of the 
important sources of error in this paper. Some of these po-
tential measurement problems are controllable and some are 
not.   

In summary, the resulting set of experimentally derived 
FRFs that will be used for curve fitting must match the as-
sumed analytical form of the FRF.  Any deviation from this 
assumed form will lead to difficulties and errors in the curve 
fitting process, which translates into errors in the estimates 
of the modal parameters of the structure. 
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