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ABSTRACT 
A set of scaled mode shapes is a complete representation of 
the linear dynamic properties of a structure. They can be 
used for a variety of different analyses, including structural 
modifications, forced response simulations, excitation force 
calculations from measured responses, and FRF synthesis 
for comparison with experimental data.  

When mode shapes are obtained experimentally from oper-
ating data, they are not properly scaled to preserve the mass 
& elastic properties of the structure.  By operating data, we 
mean that only structural responses were measured.  Excita-
tion forces were not measured. 

In this paper, we review the traditional methods for scaling 
experimental mode shapes using FRFs, and also introduce 
two new methods that don’t require FRF measurement.  The 
new methods combine a search algorithm with the SDM 
(Structural Dynamics Modification or eigenvalue modifica-
tion) algorithm to perform a series of structural modifica-
tions until proper scaling of the mode shapes is achieved. 

Details of the methods and examples of their use are includ-
ed. 

INTRODUCTION 
Mode shapes are called "shapes" because they are unique in 
shape, but not in value.  That is, the mode shape vector 

}u{ k  for each mode(k) does not have unique values, 

=}u{ k  DOFs-dimensional mode shape vector for the 
mode(k). 

DOFs = number of DOFs of the mode shape or structure 
model. 

Each mode shape can be arbitrarily scaled to any set of val-
ues, but the relationship of one shape component to any 
other is unique.  The "shape" of }u{ k  is unique, but its 
values are not.  A mode shape is also called an eigenvector 
for the same reason.   

In order to preserve the mass & elastic properties of a struc-
ture using its mode shapes, they must be scaled in a particu-
lar manner. Properly scaled mode shapes can be used for 
different analyses, including structural modifications, forced 
response simulations, excitation force calculations from 

measured responses, and frequency response function (FRF) 
synthesis for comparison with experimental data 

Modal Mass Matrix 

The mode shapes of a finite element model are defined in a 
manner which “simultaneously diagonalizes” both the mass 
and the stiffness matrix.  This is the so-called orthogonality 
property. 

When the mass matrix is post-multiplied by the mode shape 
matrix and pre-multiplied by its transpose, the result is a 
diagonal matrix, shown in equation (1).  This is a definition 
of modal mass. 
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where, 

=]M[  mass matrix (DOFs by DOFs). 

[ ]==φ }u{}u{}u{][ m21   mode shape matrix (DOFs  
by Modes). 

t – denotes the transpose. 
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1m  = modal mass matrix (Modes by 

Modes). 

Modes = number of modes in the model. 

The modal mass of each mode(k) is a diagonal element of 
the modal mass matrix, 

Modal mass: 
kk

k A
1m
ω

=    k=1,…, Modes  (2) 

=ωk  damped natural frequency of mode(k). 

=kA  scaling constant for mode(k). 

Equation (2) indicates that modal masses are indeed arbi-
trary, and can also be written in terms of the modal frequen-
cy kω and a scaling constant kA (See [2] & [3] for details 
of this definition). 
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Scaling Mode Shapes to Unit Modal Masses 

One of the common ways to scale mode shapes is to scale 
them so that the modal masses are one (unity).  This is 
called unit modal mass (UMM) scaling.  When a mass ma-
trix [ ]M  is available, the mode vectors would simply be 

scaled such that when the triple product [ ] [ ] [ ]φφ Mt  is 
formed, the resulting modal mass matrix would equal an 
identity matrix. 

However, when mode shapes are obtained from experi-
mental measurements, no mass matrix is available for scal-
ing them.  Furthermore, when mode shapes are obtained 
from operating data, i.e. no excitation forces are measured, 
traditional scaling methods cannot be used either. 

First, we will review the traditional scaling methods which 
rely on FRF measurements (where the excitation forces are 
measured), and then introduce two new methods that don’t 
require FRF measurements. 

SCALING MODE SHAPES USING FRFS 
Traditional UMM mode shape scaling requires either the 
measurement of a Driving Point FRF, or a Triangular Meas-
urement which involves three FRFs. 

Experimental mode shapes are UMM scaled by using the 
relationship between residues and mode shapes [3].   

t
kkk }u}{u{A)]k(r[ =  k=1,…, Modes (3) 

where, 

=)]k(r[  residue matrix for mode(k), (DOFs by DOFs). 

Residues are the constant numerators of the transfer func-
tion matrix when it is written in partial fraction form as, 

∑
= −
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−
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k )ps(j2
)]k(r[

)ps(j2
)]k(r[)]s(H[  (4) 

where: 

=kp  =ω+σ− kk j  pole location for mode(k). 

=ωk  damped natural frequency of mode(k). 

=σk  damping coefficient of mode(k). 

* -denotes the complex conjugate. 

=)]s(H[  transfer function matrix (DOFs by DOFs). 

Experimental FRFs are merely values of the transfer func-
tions measured along the ωj -axis in the S-plane [4]. 

Equation (3) shows that each residue matrix )]k(r[  is 

formed by multiplying each mode shape }u{ k  by its own 
transpose.  This causes every row and column of the residue 

matrix to contain the mode shape, multiplied by a different 
shape component. This unique outer product is why exper-
imental mode shapes can be obtained by measuring just one 
row or column of the transfer function matrix. 

Each element of the residue matrix then, is the product of 
two mode shape components ( iku & jku ) and the scaling 

constant kA , 

jkikkij uuA)k(r =  k=1,…, Modes (5)  

Residues have unique values, and therefore have engineer-
ing units associated with them. 

Transfer functions for mechanical structures typically have 
units of (motion / force), and the denominators have units of 
Hz or (radians/second).  Therefore, residues have units of 
(motion / force-second). 
Equation (3) can be written for the thj  column (or row) of 
the residue matrix and for mode(k) as, 
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       Unique           Variable   

where, 

k=1,…, Modes 

n = DOFs = number of DOFs of the mode shape. 

The importance of this relationship is that residues are 
unique in value and reflect the unique physical properties 
of the structure, while the mode shapes aren't unique in 
value and can therefore be scaled in any manner desired. 

The scaling constant kA must always be chosen so that 

equation (6) remains valid.  The value of kA can be chosen 
first, and the mode shapes scaled accordingly, or the mode 
shapes can be scaled first and kA calculated so that equation 
(6) is still satisfied. 

In order to obtain UMM mode shapes, we simply set the 
modal mass equal to one (1) and solve equation (6) for kA .   
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So, for UMM scaling, 

k
k

1A
ω

=  k=1,…, Modes (7)  

Driving Point Measurement 

UMM mode shape vectors are then obtained from the thj  
column (or row) of the residue matrix by substituting equa-
tion (7) into equation (6), 
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     UMM           k=1,…, Modes 

Notice that the driving point residue ( )krjj  (where the row 
index(j) equals the column index(j) ), plays an important 
role in this scaling process.  The driving point residue for 
each mode(k) is required in order to use equation (8).  These 
residues are obtained by making and curve fitting the corre-
sponding driving point FRF measurement. 

Triangular Measurement 

All driving point FRFs occur along the diagonal of the 
transfer function matrix.  A driving point FRF measurement 
is often difficult to make.  Furthermore, because the contri-
butions of all modes “sum together” in a driving point FRF, 
it is often more difficult to accurately curve fit than an off-
diagonal measurement.  Consequently, UMM shapes ob-
tained from equation (8) is often error prone 

As an alternative to the driving point FRF, three off diago-
nal FRFs can be made to provide the driving point UMM 
mode shape component jku required in equation (8). The 
following relationship can be derived from equation (5), 

)k(rA
)k(r)k(r

u
pqk

jqjp
jk =  k=1,…, Modes (9)  

This expression for jku  can then be substituted into equa-
tion (8) to yield UMM mode shapes.   

Equation (9) requires that three FRF measurements, involv-
ing three DOFs, DOF(p), DOF(q), and DOF(j), be made 
and curve fit to obtain the required residues.  DOF(j) is the 

reference (fixed) DOF for the thj  column (or row) of the 

transfer function matrix.  The two measurements jpH  & 

jqH would normally be made along with the rest of the 

FRFs in the thj  column (or row).  One additional measure-

ment pqH is required to satisfy equation (9).  Since the 

measurements jpH , jqH , & pqH form a triangle in the 
transfer function matrix, they are called a triangular meas-
urement. 

An Example 

To illustrate triangular measurement, Figure 1 depicts an 
FRF matrix for a structure with 4 DOFs, numbered 1 to 4.  
The circled measurements in column 3 depict a traditional 
modal test, where DOF 3 is the reference DOF.  For triangu-
lar measurement, one extra measurement 12H  is also re-
quired. 

The residues from 12H , together with those from meas-

urements 13H  & 23H would be using in equation (9) to 

calculate the UMM mode shape component k3u for each 

mode(k).  Then, k3u can be used together with residues 

from 13H , 23H  & 43H  to obtain the UMM mode shape 

components k1u , k2u  & k4u  respectively, for each 
mode(k). 

 
Figure 1. Triangular Measurement Example. 

Notice that the driving point measurement 33H was not 
needed in order to calculate the 4 UMM mode shape com-
ponents.  Therefore, the total number of required measure-
ments remains the same (in this case 4), whether the driving 
point or the triangular measurement method is used for scal-
ing. 

OFF-DIAGONAL MEASUREMENTS 
In addition to providing an alternative method for obtaining 
UMM mode shapes, Equation (9) also allows structures to 
be tested differently, by measuring a set only off-diagonal 
elements instead of a single row or column of the transfer 
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function matrix.  This alternative testing method offers a 
significant advantage for testing larger structures. 

Fro example, the 7 mile long San Mateo bridge cannot be 
tested by using a single reference and measuring one row or 
column of FRFs. 
 

 
Figure 2. San Mateo Bridge. 

Suppose that the off-diagonal elements shown in Figure 3 
are measured instead of a column of FRFs. 

UMM mode shapes can still be obtained from this set of 
measurements in a manner similar to the previous case.   

 
Figure 3. Off-Diagonal Measurements. 

Residues from measurements 12H , 13H  & 23H  can be 
used three different ways in equation (9) to obtain the UMM 
mode shape components k1u , k2u  & k3u  respectively, for 

each mode(k).  Finally, mode shape component k4u is cal-

culated by using residues from 34H and mode shape com-

ponent k3u . 

But the real advantage of this second example is the way n 
which the measurements are made.  Each FRF is a two 
channel measurement, made between a pair of DOFs.  In 
this case, the modal test could be laid out so that each pair 
of DOFs is “physically close” to one another. 

For instance, an impact hammer, accelerometer, and 2-
channel analyzer or data acquisition system could be used to 
move along a structure making measurements between pairs 
of neighboring DOFs.   Any size of structure could be easily 
tested with this method. 

By comparison, measuring one row or column of the trans-
fer matrix requires that one DOF (either the accelerometer 
or the impact DOF) remain fixed as a reference.  This can 
cause signal-to-noise as well as electrical cabling problems 
when testing large structures since some DOFs will be phys-
ically distant from the reference DOF. 

ODS MEASUREMENTS 
So far, we have only addressed mode shape scaling when 
FRFs are measured.  Experimental mode shapes are most 
commonly obtained by curve fitting a set of FRF measure-
ments.  However, an FRF measurement requires that all of 
the excitation forces causing a response be simultaneously 
acquired with the response.  

Measuring all of the excitation forces can be difficult, if not 
impossible in many situations.  FRFs cannot be measured on 
operating machinery or equipment where internally generat-
ed forces, acoustic excitation, and other forms of excitation 
are unmeasurable.   

Operating Deflection Shape 

On the other hand, one or more vibration responses can al-
ways be measured, no matter what forces are causing the 
vibration.  When two or more response measurements are 
made on a machine or structure, this is called an Operating 
Deflection Shape (ODS), or simply a Deflection Shape. 

Like a mode shape, an ODS is defined with a magnitude & 
phase of the vibration response at each measurement point.  
In order to define a valid ODS vector, the magnitude & 
phase of each response relative to all others is required at 
each of the response measurement points.   

Time Domain ODS Measurements 

In a set of time domain ODS measurements, relative magni-
tude & phase are implicitly assumed.  This requires that all 
responses are simultaneously acquired, or at least measured 
under conditions when a repeatable event can be captured 
using a trigger [5]. 

Simultaneous acquisition of all responses requires a multi-
channel acquisition system that can simultaneously acquire 
all of the response signals.  This requires lots of transducers 
and signal conditioning equipment, which is expensive. 

Frequency Domain ODS Measurements 

The advantage of making a set of frequency domain meas-
urements is that relative magnitudes & phases of two or 
more response measurements can be assured, and simulta-
neously acquisition is only required using as few as 2-
channels at a time. 

It will also be assumed that the machine or structure is vi-
brating in a stationary manner [5], [8], [9].  If this is not the 
case, then further signal processing may be required [6]. 
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Measurement Sets 

When the data acquisition system does not have enough 
channels to simultaneously acquire all of the channels, then 
data must be acquired in multiple measurement sets [9]. To 
insure proper relative phases between multiple roving (dif-
ferent) responses acquired with multiple measurement sets, 
at least one channel must be used as a reference (fixed) 
channel, and it must be measured in all measurement sets. 

To preserve the correct relative phase among all responses, 
a Cross Power Spectrum (XPS) measurement must be made 
between each roving response and a reference response. 

In order to see how this measurement can be used to obtain 
mode shapes, the relationship between the response Auto 
Power Spectrum (APS) and the FRF is considered first. 

Relationship Between the Response APS & FRF 

An FRF is defined as the Fourier spectrum of a vibration 
response divided by the Fourier spectrum of the force that 
caused the response, 

)(F
)(X)(H

ω
ω

ω =     (10) 

where: 

=)(X ω Fourier spectrum of response. 
=)(F ω Fourier spectrum of excitation force. 

=ω frequency variable. 
 
The FRF is a 2-channel measurement, and requires that both 
the force and the response signals be simultaneously ac-
quired. The magnitude squared of the FRF can be written 
as, 

*

*
2

)(F)(F
)(X)(X)(H

ωω
ωω

ω =    (11) 

where: 
=*)(X)(X ωω APS of the response. 

=*)(F)(F ωω APS of the excitation force. 

* - denotes complex conjugate. 

Because the response spectrum is divided by the force spec-
trum, we know that any peaks in the FRF must be due to 
modes (or resonances) of the structure.  Resonance peaks 
will also appear at the same frequencies in the APS of the 
response.   Equation (11) also leads to the following result. 

Flat Force Spectrum Assumption:  If the APS of the exci-
tation force is assumed to be “relatively flat” over the fre-
quency range of measurement, then any peaks in the re-
sponse APS are due to modes of the structure. 

Response APS Matrix  

Equation (11) can be generalized to a matrix of FRF prod-
ucts involving multiple roving & reference responses.  The 
diagonal elements of this matrix are the same as equation 
(11) for each response, while the off-diagonal elements are 
complex valued, 

[ ] T
*

T

YX )}(Y)}{(X{
)(F)(F
)}(Y)}{(X{)(HH ωω≈

ωω
ωω

=ω  

          (12) 
where: 

=ω)}(X{ vector of  Fourier spectra of a roving 
                    responses (Roving DOFs - vector). 

=ω)}(Y{ vector of Fourier spectra of reference 
                    responses (Reference DOFs - vector). 

T – denotes the conjugate transpose. 

[ ] =ω)(HH YX  matrix of FRF products. 
                    (Roving DOFs by Reference DOFs) 

If the Flat Force Spectrum Assumption is again made, 
then the above matrix is proportional to a matrix of XPS’s 
formed between each roving and each reference response.  
This matrix is simply referred to as the Response XPS Ma-
trix, 

[ ] T)}(Y)}{(X{)(XPS ωω=ω        (13) 

where: 

[ ] =ω)(XPS  Response XPS Matrix. 
            (Roving DOFs by Reference DOFs) 

Because of the Flat Force Spectrum Assumption, resonance 
peaks that would appear in the FRFs due to modes will also 
appear at the same frequencies in each element of the Re-
sponse XPS Matrix. Also, the values of a column of this 
matrix at any frequency is an ODS. 

Operating Mode Shapes From a Column of the Re-
sponse XPS Matrix. 

Operating mode shapes can be obtained by curve fitting a 
parametric model of an FRF to the square root (or RMS) of 
elements from a column of [ ])(XPS ω  [6].  Since forces 
are not measured, these operating mode shapes are not 
UMM mode shapes.  Furthermore, if it is assumed that FRF 
measurements cannot be made, the operating mode shapes 
cannot be scaled to UMM mode shapes by using the previ-
ously described methods. Two new scaling methods are 
introduced below which don’t rely on FRF measurements. 
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REVIEW OF THE SDM METHOD 
The SDM (or eigenvalue modification) method uses a set of 
UMM mode shapes from an unmodified structure, together 
with one or more finite element representations of a struc-
tural modification (e.g. mass, stiffener, or tuned absorber 
addition) to calculate a new set of modes for the modified 
structure [10].  This process is depicted in Figure 4. 

 
Figure 4. SDM Procedure. 

 
Since the SDM procedure requires a set of UMM mode 
shapes for the unmodified structure, if the mode shapes are 
not scaled properly, the intended modification will yield 
incorrect modal shapes for the modified structure.  This fact 
is utilized in a search procedure that finds an optimal scale 
factor (or set of scale factors) so that SDM yields correct 
answers from a set of operating mode shapes. 

SCALE FACTOR SEARCH METHOD 
Suppose that a specific modification (such as a mass addi-
tion) to a certain machine or structure is known to yield a 
new set of modal frequencies.  These new frequencies could 
be determined experimentally by measuring a single XPS 
under operating conditions and curve fitting it. 

This known modification, together with SDM and an opti-
mal search algorithm, can be used to scale a set of operating 
mode shapes to UMM mode shapes. 

It is assumed that in a given set of operating mode shapes, 
each is correct in “shape” but will differ from its corre-
sponding UMM mode shape by a multiplicative scale factor. 
To determine an optimum set of scale factors, the SDM al-
gorithm is used to calculate modified mode shapes, and a 
search procedure is used to iterate toward a set of scale fac-
tors which yield the correct modes for the modified struc-
ture. 

In general, the objective function to be minimized can be 
written as, 

J =MIN ( ) 







−∑

=

Modes

1K

2
SDMKnown )k(F)k(F      (14) 

where: 

=)k(FKnown  known modal parameter (frequency,  
                         damping, or mode shape component). 

=)k(FSDM  modal parameter predicted by SDM. 
J = Objective function. 

Finding a Single Scale Factor 

The simplest case is to assume that the excitation force 
spectrum is not only flat but has the same value for all fre-
quencies.  This means that all of the operating mode shapes 
differ from their corresponding UMM mode shapes by a 
single scale factor.  The search problem can then be stated 
in the following manner, 

Single Scale Factor Search Problem: Find a single scale 
factor ( fS ), which when multiplied by a set of operating 
mode shapes, 

[ ] =}u{S}u{S}u{S mf2f1f  operating mode shape 
matrix (DOFs by Modes). 

and used together with the SDM method, minimizes the 
objective function (J) in equation (14).  

SCALING WITH A KNOWN MODIFICA-
TION 
The Single Scale Factor Search Problem can be further sim-
plified by using only modal frequencies in the objective 
function (J).  Mass modifications are easy to make to most 
real structures, and the new modal frequencies are relatively 
easy to determine experimentally.  Therefore, the objective 
function (J) becomes merely a summation of the squared 
differences between the known modal frequencies of the 
modified structure, and those calculated by the SDM meth-
od. 

Illustrative Example: To illustrate the UMM scaling pro-
cedure using a known modification, consider the lumped 
parameter model shown in Figure 5.  This structure has two 
modes, an “in-phase” mode as 2.82 Hz, and an “out-of-
phase” mode at 8.98 Hz, as shown in Figure 6. 

 
Figure 5. 2-DOF Structure. 
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Error Due To Un-scaled Mode Shapes 

To test the Known Modification search method, a 1 Kg 
mass was added to each mass.  Using UMM shapes, this 
modification changed the model frequencies to 2.75 Hz and 
8.58 Hz. 

To investigate the effects of incorrectly scaled shapes on the 
objective function (J), un-scaled mode shapes were simulat-
ed by multiplying the UMM shapes by a range of scale fac-
tors (from 1E-5 to 1E+5), listed in the first column of Table 
1.   Then the known modification (two 1 Kg masses) was 
made using each set of un-scaled shapes.  

 
Figure 6. Modes of the 2 DOF Structure. 

The new modal frequencies and objective function (J) val-
ues are also shown in Table 1.  These results show that as 
the un-scaled shapes become much less than the UMM 
shapes (Scale By’s << 1), the modification has no effect on 
the modal frequencies and J  “flattens out” at 0.165. 

Also, as the un-scaled shapes become much greater in value 
than the UMM shapes (Scale By’s >> 1), the modification 
drives the modal frequencies toward 0 Hz, and again J  
“flattens out” at 81.179.  

This behavior indicates that a range of scale factor values 
can be found between the extremes where J “flattens out”. 
For the 2-DOF structure, the range is 0.1 to 10000.  In fact, 
correct scale factors (inverses of the scale by’s listed in Ta-
ble 1) were found by our Known Modification search meth-
od for all cases between 0.001 & 100,000! 

SCALING BASED ON A MODIFICATION 
ROUND TRIP  
One of the unique characteristics of the SDM algorithm is 
that it works equally well when modifications are subtracted 
from a structure.  This capability can used to perform a 
modification “round trip” to a structure.   

In a modification round trip, SDM is used twice; first to add 
modification elements to a structure and obtain new mode 
shapes, and then to subtract the same modification elements 
from the modified structure and recover the original mode 
shapes.  

If the original mode shapes are UMM mode shapes, then the 
modification round trip should return the original UMM 
shapes.  In the original modes are operating mode shapes 
(not properly scaled), the round trip will yield different 
modal parameters. 

Following a modification round trip, the objective function 
(J) is calculated as a summation of the squared differences 
between the original modal parameters and those calculated 
by the modification round trip. 
 

Shapes 
Scaled By 

Mode 1 
frequency 

Mode 2 
frequency J 

0.00001 2.82 8.98 0.165 

0.0001 2.82 8.98 0.165 

0.001 2.82 8.98 0.165 

0.01 2.82 8.98 0.165 

0.1 2.82 8.98 0.165 

0.25 2.81 8.96 0.148 

0.50 2.80 8.88 0.093 

0.75 2.78 8.75 0.030 

1.0 2.75 8.58 0.0 

2.5 2.44 7.10 2.287 

5.0 1.84 4.89 14.444 

7.5 1.41 3.58 26.796 

10 1.12 2.79 36.181 

100 0.122 0.294 75.564 

1000 0.0122 0.0294 80.607 

10,000 0.00128 0.00294 81.179 

100,000 0.000122 0.000294 81.179 

Table 1.  Modifications Using Un-Scaled Shapes. 

For the 2-DOF Structure model shown in Figure 3 and the 
un-scaled shape cases shown in Table 1, the Modification 
Round Trip algorithm converged on the correct scale factors 
for all cases between 0.5 & 1000. 

CONCLUSIONS 
Mode shape scaling is important if a set of experimental 
mode shapes is to be used for further modeling and simula-
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tion studies.  If the mode shapes are obtained from operating 
data, they will not be properly scaled. 

As background for the new scaling methods introduced 
here, two traditional UMM scaling methods (which rely on 
FRF measurements) were reviewed first.  However, these 
methods cannot be used in situations where the excitation 
forces cannot be measured, and consequently FRFs cannot 
be calculated. 

Two new scaling methods, which combine the SDM method 
with an optimal search algorithm were introduced.  The first 
method (Known Modification) requires that the modal pa-
rameters of a known structural modification be measured.  
A simple mass addition is relatively straightforward to carry 
out in most operating environments, and this is sufficient to 
cause the mode to change. The modal frequencies of the 
modified structure are a minimum requirement, and they 
could be obtained from a single auto APS measurement. 

The second scaling method (Modification Round Trip) is 
strictly computational, and relies on the fact that a modifica-
tion round trip using SDM will return the original UMM 
mode shapes, if they are properly scaled. Otherwise, modes 
with different modal parameters are returned. 

Both of these scaling methods rely on an iterative optimal 
search algorithm, and no proof of convergence to a unique 
solution was given.  The types, amounts, and physical loca-
tions of the modifications used will clearly influence the 
convergence performance.  It is conceivable that a solution 
may be difficult or impossible to find in many situations. 

Although the examples given only involved a single scale 
factor for all mode shapes, both methods have been extend-
ed to a multi-dimensional search for a scale factor for each 
mode shape.  A good strategy is to search for a single scale 
factor first, apply it to all shapes, and then perform a multi-
dimensional search for each mode shape scale factor. 

Prior to using either scaling method, operating mode shapes 
should be scaled by multiplying them by the inverse of the 
square root of the estimated mass of the structure.  This will 
scale them into the “vicinity” of the correct UMM values, 
and improve the convergence of the search methods. 

Although more research is required to further validate this 
approach to mode shape scaling, it has been shown to work 
well for simple cases. 
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