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ABSTRACT 
During an Operating Deflection Shape (ODS) test, there is 
often concern not only about the displacements that occur 
during operation, but also about the stress or strain levels 
that are being encountered.  If in-plane vibration were 
measured, then strain could be estimated as the change in 
displacement between two transducers divided by the dis-
tance between them.  Unfortunately, vibration is usually 
measured normal to the surface instead of in-plane, so stress 
or strain cannot be calculated from this data. 

However, if a finite element model is used in conjunction 
with ODS test data, the model can be deformed using the 
measured data and the appropriate stresses, strains and even 
applied forces can be calculated.  Details of this method and 
several practical examples of its use are included in this 
paper. 

OBTAINING STRAINS FROM ODS’s 
When performing an ODS test, we can measure ODS FRFs 
(magnitudes & phases) at several DOFs and obtain a set of 
displacements that describe the deformation of a structure, 
at any frequency [6].  The question then becomes, “For a 
given ODS of structural deformations, what are the associ-
ated stress and strain levels being experienced by the struc-
ture?”   

Since strain is defined as the rate of change in the defor-
mation, it can always be calculated from displacements.  For 
the simple case of a rod being extended and compressed 
along its length, its strain would be calculated with the for-
mula, 

 (1) 

where: 

x = the amount of deflection of the rod. 
L = the length of the rod.   

Stress is simply related to strain by the modulus of elastici-
ty, 

ε=σ E  (2) 

In most practical cases however, the strain field is more 
complex and includes the effects of structural bending and 

torsion.  For these cases, the equations relating displacement 
and strain are much more complex, but finite element analy-
sis can be used to obtain a solution. 

Finite element analysis is commonly used to determine 
stress or strain levels due to certain static loading conditions 
on a structure.  Using this same approach, a finite element 
model can also be used with experimental ODS data to cal-
culate the stresses and strains being experienced within a 
structure. 

BACKGROUND THEORY 
The simplest model of a vibrating structure is a single-
degree-of-freedom (SDOF) system consisting of a mass 
connected by a spring and damper to ground. 

 
Figure 1. Mass-Spring-Damper (SDOF) Structure. 

The motion of this structure is governed by Newton’s Sec-
ond Law, 

( ) ( ) ( ) ( )txKtxCtxMtf ++=   (3) 

where: 

 M = the distributed mass of the structure. 
 C = the damping within the structure. 
 K = the stiffness of the structure. 

 f(t) = the force applied to the structure over time. 
 x(t) = the displacement of the structure over time. 

)t(x  = the velocity of the structure over time. 
)t(x  = the acceleration of the structure over time. 

L
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In the frequency domain, the equivalent equation of motion 
is,  

)s(X]KsCsM[)s(F 2 ++=  (4) 

where:  

X(s) = Laplace transform of the displacement. 
F(s) = Laplace transform of the force. 

=ω+σ= js complex Laplace variable 

Assuming a quasi-static solution and removing the time 
variable from equation (3), a simplified form of Newton’s 
Second Law relates the amount of deformation directly to 
the applied forces, 

 (5) 

This is also known as Hooke’s Law.  Since the force and 
displacement are assumed to be constant (quasi-static) with 
respect to time, the mass and damping terms (involving in 
the velocity and acceleration) are negligible and are there-
fore not required. 

Complex Structures 

Newton’s Second Law still governs the motion of more 
complex structures, but instead of a single equation like (3) 
or (4), multiple equations are written.  The mass, stiffness, 
and damping are replaced with matrices of constants, and 
the force and motion terms become vectors instead of sca-
lars. 

Solid Mechanics has been used to derive closed form solu-
tions to equations (3) or (4) for a variety of simplified ge-
ometries.  Formulas to obtain stresses and strains in beams 
and plates are compiled in Reference [1]. Formulas to obtain 
the dynamic characteristics of beams and plates are com-
piled in Reference [2]. 

In general, it is impossible to derive a closed form solution 
for a complex structure such as a machine or a bridge.  
However, finite element modeling can be used to sub-divide 
a complex structure into a series of simple elements such as 
beams or plates. The stiffnesses of these simple elements 
can be represented using known analytical formulae. Many 
interconnected finite elements can then be used to form a set 
of matrix equations that define the dynamics of complex 
structures. 

Each finite element provides a description of how the struc-
ture behaves in its local region.  The stiffness matrix for the 
overall structure is then constructed by calculating element 
stiffnesses and also taking into account how each of the el-
ements interacts with its surrounding neighbors (i.e. its 
boundary conditions).  

A typical finite element is defined by points and straight line 
boundaries connecting the points.  A set of equations can 
then be defined for the displacement anywhere inside the 

boundaries of the element, based on the displacements of its 
endpoints.  Since displacements can be defined anywhere in 
an element, stresses and strains can also be defined any-
where. The general equation for the stiffness matrix of an 
element is, 

∫=
V

T dV]B][D[]B[]K[  (6) 

where: 

[D] = elasticity matrix. 
[B] = strain matrix. 

The strain matrix [B] transforms the displacements into 
strains and the elasticity matrix [D] transforms the strains 
into stresses.  The form of the strain matrix and the elasticity 
matrix will vary based upon the type of finite element used.  
The elasticity matrix will also vary based upon the material 
model being used (Isotropic, Orthotropic, etc.).  Strain ma-
trices for different element types as well as numerical inte-
gration techniques can be found in most finite element text 
books [3], [4]. 

 The finite element method generates stiffness matrices for 
each element, and then sums them together to create a glob-
al stiffness matrix. For complex structures, equation (5) be-
comes, 

[ ]
[ ]( ) globallocal

globalglobalglobal

xK

xKF

∑=

=
 (7) 

To solve equation (7), it is assumed that either the displace-
ment of a degree-of-freedom (direction at a point) is known, 
or the applied force at the DOF is known.  This allows the 
solution of equation (7) to be partitioned as follows, 
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 (8) 

where: 

uf = unknown forces. 

= known forces. 

= unknown displacements. 

= known displacements. 

Equation (8) can be solved for the unknown displacements 
as follows, 
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Equations (9) shows that the unknown displacements 

can be calculated from the known forces kf  and known 

displacements .  Once all of the displacements in the 
structure are known, equation (8) can be solved to determine 
the unknown applied forces uf .  Or we can go back to the 
element matrices in (6) and compute stresses and strains 
within the elements. 

SHAPE EXPANSION USING FINITE ELE-
MENTS 
From equation (9) it is clear that the deformations at un-
known DOFs  are based not only on any known applied 
forces, but also on known (measured) deformations. 

In general, since only displacements are measured in an 
ODS test, all of the known forces are assumed to be zero.  
This assumption further simplifies equation (9) to, 

[ ] [ ]{ }k21
1

22u xKKx −−=  (10) 

Equation (10) can therefore be used to extend (interpolate or 
extrapolate) shape data to all unmeasured DOFs using data 
from the measured DOFs. 

Illustrative Example No. 1 
Consider a 25 in. long 1 in. square steel cantilever beam 
deflected 2 in. at its free end, as shown in Figure 2.  Apply-
ing the 2 in. deflection as a prescribed (measured) displace-
ment and solving this problem using the NASTRAN finite 
element program, shows that a 320 lb. force must be applied 
at the free end of the beam to deflect it 2 in.    

 
Figure 2.  Cantilever Beam Deflected by an End Load. 

The moments in the beam start at zero at the free end, and 
increase linearly to 8000 in-lbs at the fixed end. 

The maximum bending stress at the fixed end of beam is, 

psi48000

5.0*8000
I

Mc

12
)1( 4

=

=

=σ

  

where: 

M = moment of inertia. 
c = distance from neutral axis to the top or bottom sur-
face. 
I = cross sectional inertia. 

With 2 in. of prescribed displacement at the free end, the 
displacement at the midpoint of the beam is calculated as 
0.625 in. 

If this displacement is applied to the finite element model 
instead of the 2 in. displacement at the free end, a different 
solution will result, as shown in Figure 3. 

 
Figure 3.  Cantilever Beam Deflected by a Center Load. 

Moving the prescribed displacement also moves the location 
of the applied force.  Instead of applying a force at the free 
end, it would be applied at the same location as the pre-
scribed displacement, at the midpoint. 

Notice that a 0.625 in. prescribed displacement at the mid-
point displaces the free end only 1.524 in. instead of 2 in.  
Since the load is applied at the midpoint and the beam is not 
subjected to any other forces, it therefore remains straight to 
the right of the midpoint.  

When the beam is displaced from its midpoint, the forces, 
moments and stresses in the beam will clearly be different 
than when the free end is displaced. To displace the mid-
point by 0.625 in., an 800 lb. force must be applied at the 
midpoint. The moment at the fixed end of the beam increas-
es to 10000 in-lbs and the peak bending stress increases to 
60000 psi.   

This example shows that a finite element solution is possi-
ble if displacements are measured at all of the DOFs where 
forces are applied to the structure.  Otherwise, the load will 
be redistributed and the calculated deformations, stresses 
and strains will be incorrect.   
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Nevertheless, this method provides improvements over 
purely geometrical interpolation methods that determine the 
motions of unmeasured DOFs using the motions of nearby 
measured DOFs.  For the above case, most geometric inter-
polation methods would yield a straight line deformation 
between the free and fixed end points.  Furthermore, once 
the motions of the unknown DOFs have been calculated, the 
finite elements can be used again to calculate stresses and 
strains. 
IMPROVED SHAPE EXPANSION 
The standard finite element solution (using the example 
above) assumes that either the force or the displacement is 
known at each DOF.  However, this does not necessarily 
need to be true to obtain a solution using equation (8).  All 
that is required is that the total number of unknown dis-
placements and forces must equal the total number of equa-
tions.  This restriction is still satisfied if a measured dis-
placement is applied to one DOF, and a force is specified at 
a different DOF. 

To clarify this, the stiffness matrix can be re-written using 4 
separate partitions. 

1. DOFs with known displacements and unknown forc-
es.  This includes all DOFs that act as boundary condi-
tions, and any DOFs where ODS data is measured, and 
forces are applied but unknown. 

2. DOFs with known displacements and known forces.  
For most vibration tests, these are the DOFs where 
ODS data is measured, but where no external forces are 
applied. 

3. DOFs with unknown displacements and unknown 
forces. These are the DOFs at which displacements are 
not measured, and forces are applied but also unknown.  
The number of DOFs of this type will equal the number 
of DOFs in partition 2.   

4. DOFs with unknown displacements and known forc-
es.  These are the DOFs for which displacements are 
not measured, and no forces are applied. 

Equation (8) now expands into, 
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 (11) 

Partitioning this matrix and using the known forces and dis-
placements to solve for the unknown displacements gives, 
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(12) 

In order to solve equation (12), the inverse of a non-
symmetric matrix that is the size of the number of unknown 
DOFs must be calculated.  This matrix is also not sparsely 
populated, so the usual finite element solution methods that 
apply to symmetric, sparse matrices cannot be used.  Conse-
quently, our ability to solve problems with large numbers of 
unknown DOFs is limited.   

It is also possible to create a singular matrix that cannot be 
inverted.  This can be done by clustering the unknown forc-
es together, and isolating the unknown DOFs from the forc-
es. 

Illustrative Example No. 2 
Consider a stepped aluminum rod subjected to an end load 
with a measured deflection of 5 mils at point 4 (the mid-
point). 

 
Figure 4.  Cantilever Beam with Variable Cross Section. 

For a Rod with fixed cross section, the stiffness matrix is, 

 (13) 

where: 

L = the Rod length. 
A = the Rod cross sectional area. 
E = Modulus of elasticity. 

The stresses and strains in the Rod are 
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Consider the six cross sections of the beam in Figure 4 to 
have the following properties, 

L=10in 
E=107psi 

2
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These parameters were used to assemble the partitioned 
stiffness matrix shown in equation (11).  Rows 1 & 7 of the 
stiffness matrix are not used because they correspond to the 
unknown forces, & 7F .  Columns 1 & 4 are partitioned 

to be multiplied by the known displacements, 1u = 0 & 4u
= 0.005.  The remaining rows & columns form the partition 
of the stiffness matrix to be inverted. 

 (15) 

Solving (15) for the unknown displacements gives, 

(16) 

The forces & 7F  can now be calculated from the dis-
placements. 
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As expected for a static solution, the applied forces are 
equal and opposite.  This is known as static equilibrium. 

 

Point u(in) u∆ (in) ε (in/in) σ (psi) 

1 0.0000    

0.0012766 1.2766E-4 1277 

2 0.0012766 
0.0015957 1.596E-4 1596 

3 0.0028723 
0.0021277 2.128E-4 2128 

4 0.005 
0.0031915 3.192E-4 3192 

5 0.0081915 
0.006383 6.383E-4 6383 

6 0.0145745 
0.012766 1.277E-3 12766 

7 0.0273404 
   

Table 1.  Calculated Results for Cantilever Beam. 

For this solution, a 5x5 non -symmetric matrix was inverted.  
A finite element solution would have partitioned the stiff-
ness matrix as follows and stored the data in banded form 
allowing for a much more efficient storage of data. 
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Storing the data in band form would have reduced the re-
quired memory by 60%.  Finite element solution methods 
also employ bandwidth optimizers that allow them to opti-
mize data storage.  Memory reductions of 10 to 1 are often 
achieved.  Solutions that require over 1,000MB of computer 
memory can be solved using less than 100MB of memory. 

As previously stated, this method may not always provide a 
solution.  For instance, in Illustrative Example No.2 above, 
if a force were also been applied to point 6, the matrix to be 
inverted would have a column of zeroes and would be sin-
gular.  Of course this could be alleviated by specifying the 
displacement of point 7. 

The sum of the forces applied at points 6 & 7 could then be 
calculated, along with the displacements of the other points.  
However, the displacement of point 7 and the distribution of 
forces between points 6 & 7 still could not be determined. 

USING VELOCITY OR ACCELERATION 
DATA 
Accelerations or velocities are more commonly measured 
than displacements in an ODS test.  This is not a problem 
however, since it is straightforward to convert from one set 
of motions to another in the frequency domain. 

To convert from displacement to velocity in the frequency 
domain, the Laplace transform is used for differentiation 
[5]. 

 (17) 

Multiplying the left and right hand sides of equation (17) by 
ωj  results in the following equations for using velocity 

measurements, 

 (18) 

For using acceleration measurements, 

 (19) 

Equations (18) and (19) show that Shape Expansion is done 
the same way using displacement, velocity, or acceleration 
frequency domain data, or using displacement time domain 
data.  Of course, to compute stresses and strains, displace-
ment data is still required.  Frequency domain velocity or 
acceleration data can be used directly, but the results must 
be integrated to displacements in order to calculate stresses 
and strains. 

CONCLUSIONS 
A method for calculating structural stresses and strains from 
experimental ODS data was introduced.  The method relies 
on finite element analysis to calculate the stiffness proper-
ties of the structure, from which all unmeasured displace-
ments are then calculated, including in-plane displacements 
which are not typically measured.  In-plane displacements 
are required to calculate stresses and strains. 

Two simple examples were included to illustrate the calcu-
lations required to implement this method. Standard finite 
element analysis generally assumes that the forces are ap-
plied at the same DOFs where the experimental ODS data is 
taken.  It was shown that this assumption can be relaxed. By 
modifying the assumption regarding the known and un-
known forces, it was shown by example that a valid solution 
can still be obtained using the same finite element equa-
tions. 
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The new solution is somewhat restricted in that it requires 
the inversion of a non-sparse non-symmetric matrix.  There-
fore, large model sizes may be computationally prohibitive.  

This new approach offers two significant advantages.  First, 
it yields more realistic shape interpolations than geometri-
cally based interpolation methods, and it can also be used to 
extrapolate shapes, which is not possible with geometric 
interpolation except in the simplest cases.  Secondly, by 
combining experimental ODS data with finite element mod-
eling, this approach provides an alternative for determining 
structural stress and strain than either finite element analysis 
alone or the use of experimental strain gages.   
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