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Until very recently, Finite Element Analysis (FEA) and Ex-
perimental Modal Analysis (EMA) have been very separate
engineering activities aimed at solving a common problem.
Now the two technologies are converging and powerful new
tools for solving noise and vibration problems are emerging
as a result. The recent term Experimental FEA has emerged.
This article provides a “lab-rat’s view” of what this term re-
ally means and why it is so valuable to today’s S&V practitio-
ner.

Experimental FEA is an integrated collection of modeling
and analysis tools designed to be used by the experimentalist.
It includes the facility to quickly build simple small-scale fi-
nite element models and solve them for natural frequencies and
mode shapes. The intent here is not to replace the traditional
analyst’s tools, which are far more comprehensive and detail-
focused. Rather, Experimental FEA is intended to augment the
experimental understanding of structures by aiding us to per-
form better modal tests, faster.

Experimental FEA is essential to test planning. It provides
scientific answers to questions that have long plagued our com-
munity, including:

What bandwidth(s) must be used in the test of a new struc-
ture?
How many modes must be identified within this bandwidth?
Can I identify all of these modes from a single reference test,
or must I collect multiple-input multiple-output (MIMO)
measurements?
Where should I place my shaker or shakers (or my reference
accelerometers for a roving impact test) to achieve the best
measurement results?
How many responses (or impact sites) must I measure in
order to draw clear and unambiguous animations of every
mode?
What is the minimum number of frequency response func-
tions (FRFs) that must be measured to validate a large-scale
FEM model of a new structure?
Where should these responses be measured?

Past Meets Future
In the November 1989 issue of Sound & Vibration,1 I reported

results from applying Kistler’s Translational/Angular Piezo-
beam™ (TAP) accelerometer to a free-free square plate. The
experiment was conducted to evaluate the merit of measuring
rotational responses as well as translational responses in a
modal test. To properly evaluate the results, it was necessary
to understand the mode shapes of the first few modes of free-
free vibration. It was also important to understand the changes
in these modes that the installation of the TAP sensor would
impose. I called upon prior experiments conducted using
acoustic excitation and response measurement to provide this.
These non-contacting measurements made in approximated
free-free condition were the best information then readily avail-
able to me.

Recently, I have had the opportunity to work with Vibrant
Technology’s ME’scopeVES. How I wish this Experimental FEA
facility had been on my desk in 1989! A few minutes work
provided me with the mode shapes shown in Figure 3. More
importantly, I was able to rapidly model the effects of adding
the 10 g TAP sensor to the plate’s center.

This simple FEA was all that I needed to conduct my experi-
ment with ease and confidence. Synthesized FRFs from this

model would have provided ideal “sanity checks” for all of my
experimental measurements, including those made in rota-
tional degrees-of-freedom (DOFs).

As illustrated in Figure 4, formulating the plate model was
a simple matter of choosing the type of substructure to model,
applying the appropriate dimensions, orienting the plate in
space and attaching quadrilateral FE plate elements to the
drawing. These few entries created the geometric model and
the mathematical model.

I chose quadrilateral elements for this thin plate. These have
24 DOFs – three translations and three rotations at each cor-
ner. Each quadrilateral is defined by its thickness and three ma-
terial properties: density (d), Young’s modulus (E) and Poisson’s
ratio (h). Library values for various materials are provided, or
you can enter the properties for your material.

For a monolithic free-free structure, that’s the whole entry
process. Applying other boundary conditions or building a
structure from multiple sub-structures requires a little more
effort, most of it graphically guided.

An eigensolution (natural frequencies, damping and mode
shapes) is accomplished at the push of a button. Even my ag-
ing 400 MHz Pentium II had little trouble in producing answers
in acceptable time. This is one of the best characteristics of
“desktop CAE” and small models; it encourages exploration of
the model.

For example, Figure 5 illustrates that small models can be
very effective at predicting modal properties. Here, the natu-
ral frequencies of the first five flexural modes of the square test
plate are presented for different numbers (1 to 100) of quadri-
lateral elements used in the model. Note the rapid convergence
of the answers. For practical purposes, a model with 36 quad-
rilateral elements will tell me as much (about these lowest
modes) as one with 100 elements. Of course, it will do so in
less computation time.

Other types of iterations, including material properties, can
be profitable. While everyone knows that the natural frequen-
cies of a plate are proportional to , the effects of h are less
commonly understood. When one or more plate edges are free,
the frequency of each mode is a function of Poisson’s ratio,3

as illustrated in Figure 6. Available finite elements include
bars, rods, triangles, quadrilaterals, tetrahedrons, prisms and
bricks. The modeling library also contains simple elements
including a mass, a spring and a damper. I used a mass element
of 10 g attached to the plate’s center to approximate the
mounted TAP sensor. As anticipated, this only affected the 3rd
(cupping) mode, as shown in Table 1.

How Many Shakers and Where?
Consider a hypothetical problem. You are required to test a

physical bridge model that is basically a pin-ended beam. We
have an FEA model of this structure (including estimated
damping) as shown in Figure 7. Our assignment is to plan an
EMA of this 2650 lb structure. Where do we excite it and how
many shakers are required? (Or, how many fixed-location ref-
erence accelerometers are needed and where do we put them
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for an effective roving impact test?)
We will start our test planning with the optimistic assump-

tion that a single reference test will be adequate to identify all
of the modes sought. In most cases, this assumption proves
valid. The modal properties shown in Figure 6 reinforce this
assumption, as the model has no repeated roots. All of the
modes are unique in shape and frequency.

Hence, we will first search for an optimum DOF from which
to excite (or observe) all of the modes of the structure. An ex-
tremely useful tool in this endeavor is the modal Shape Prod-
uct4 vector, defined by:

where {yn} is the nth modal vector of the system.
This simple element-by-element product of the modal vec-

tors can be displayed like any single mode shape of the struc-
ture. For plate-like structures, dominated by surface-normal
motion, it is particularly useful to display the absolute value
of the Shape Product as a color contour. Figure 8 illustrates
such a display for the model bridge. At each DOF location, the
Shape Product is the product of modal coefficients for all
modes in a single DOF. If that DOF is a node for any one (or
more) of the modes, the Shape Product is zero. The color con-
tour is scaled from black (zero) to white (maximum) through
the range of colors shown by the ‘thermometer.’ Thus, “bright
spots” in the color contour locate DOFs where all of the modes
participate actively. These locations are the best choices for a
single shaker or reference accelerometer installation.

Four equally attractive reference locations (DOFs 36Z, 40Z,
136Z and 140Z) are marked by red arrows in Figure 8. Any one
of these is appropriate for use in a single reference test and
curve-fit.

The real and imaginary components of the driving-point

FRFs for these four “hot spot” DOFs are overlaid in Figure 9.
As intuition would suggest, these symmetrically arranged lo-
cations yield identical FRFs. Note, however, that the driving-
point measurements of Figure 9 do not provide clear evidence
of all six modes. Five clear peaks may be seen in the imaginary
part. Each of these is bounded by a minimum and maximum
in the real component.

Figure 10 expands the display of Figure 8 around the cen-
tral peak. It is now clear that two peaks actually exist in the
imaginary component, indicating the presence of two modes.
However, it is also clear from the real component that the half-
power bandwidths of these two modes overlap one another.

From Figure 7 we note the 3rd mode is of twisting or torsional
character and occurs at 22.84 Hz with 1.764% damping. The
4th mode is a bending shape at 23.46 Hz with 1.791% damp-
ing. These modes are clearly distinct as opposed to repeated
roots. However, they are closely-coupled or overlapping modes
that are difficult to identify from a single reference test. These
modes are closely-spaced in frequency solely because of the
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Figure1. 1989 impact test of free-free square plate and TAP sensor.

Figure 2. 1st four modes of the free-free plate measured acoustically
(circa 1982).
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Figure 3. 2004 FEA of test plate.

Table 1. Natural frequency (Hz) comparison.  

Acoustic
Test

817
1207
1472
2105
2105

FE bare
plate

818.3
1174
1455
2071
2071

FE 10 g
added

818.3
1174
1368
2071
2071

TAP
Test

820
1205
1340
N/A
N/A

Mode 1 – twisting . . . . . . .
Mode 2 – saddle bend . . . 
Mode 3 – cupping . . . . . . 
1st repeated root . . . . . . . .
1st repeated root . . . . . . . .
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length/width/thickness ratios of the model bridge (and its
boundary conditions). The two modes in question have light
damping.

An earlier work2 provided a definition for the oft-bandied
term modal density (MD) and comments upon its impact on
modal curve-fitting. The 3rd and 4th modes of this model have
an extremely high local modal density of 0.6638 between them,
defined by the natural frequencies and damping factors of the
two modes in accordance with:

Note that improving the frequency resolution of the FRF
measurements will not enhance the separation of these two
modes. The precision of modal parameter identification is lim-
ited by frequency resolution for modal densities of 0.2 and less.
For modal densities between 0.2 and 1.0, the limiting factor is
the sophistication of the curve-fitting algorithm. When the
modal density exceeds 1.0, the limiting factor is the ability to
determine the number of modes in the frequency bandwidth.

Because the half-power bandwidths of the 3rd and 4th modes
overlap significantly, these modes must be identified using a
curve-fitter that can detect multiple modes within a single “fit
interval.” SDOF fitters will not work effectively at this modal

density level.
Figure 11 illustrates a highly automated “Quick Fit” to the

driving-point FRF at DOF 40Z. It successfully identified all six
modes precisely because this FRF ‘disclosed’ two modes near
the central peak to the modal peaks indicator function and the
companion MDOF fitter could extract their properties.

Figure 12 illustrates the same algorithm applied to all pos-
sible driving-point FRFs except those at DOFs 36Z, 40Z 136Z
and 140Z. That is, all possible driving-point FRFs except those
identified by the Shape Product as optimum references are fit-
ted. Note that only five modes are identified. The 4th mode at
23.46 Hz was ‘missed’ by this curve-fit to 171 FRFs.

The explanation for this “five-mode finding” is simple. None
of the 171 “non-optimum” DOFs gave evidence of the 4th mode
to the modal peaks indicator function. Five modal peaks were
found in the 171 FRFs and five modes were fitted to the data.
This can be better appreciated by viewing Figure 13 which
overlays the imaginary components of the driving-point FRF
at 40Z (red trace) with those of the four “next best” DOFs (55Z,

Figure 4. Steps in building FEA: A – select type of structure, B – add dimensions, C – orient the model, D – add finite elements.
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If the actual structural model deviates even
slightly from the FEA model, it may not be pos-
sible to gain an accurate mode count from the
experimental measurements at any DOF.
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60Z, 70Z and 75Z) identified by the Shape Product of Figure
8.

Figure 14 expands the comparison plot of Figure 13 around
the central peak. Observe that only the red “first choice” refer-
ence (40Z) gives any graphic hint of the 4th mode at 23.46 Hz.
While 4th mode participation is there, it is at too low a level
to allow the number of modes to be properly counted. Hence,
the Shape Product “hot spots” accurately identified the only
four DOFs from which all modes could be identified by a single
reference test. While a single reference test is possible, it would
be an imprudent choice for this structure.

If the actual structural model deviates even slightly from the
FEA model, it may not be possible to gain an accurate mode
count from the experimental measurements at any DOF. A
slight increase in the 3rd modal frequency, a reduction in the
4th modal frequency or an increase in damping factor for ei-
ther or both modes could increase the local modal density suf-
ficiently to obscure one of the closely-coupled modes from

Figure 5. Convergence of natural frequencies with increasing number
of quadrilateral elements.

Figure 6. Effect of Poisson’s ratio on free-free square plate natural fre-
quencies.

Figure 7. First six modes of a pin-pin beam.

Figure 8. Shape product of beam modes.

detection anywhere on the structure.
Hence, the model bridge is a proper candidate for MIMO

measurement and multiple reference curve-fitting. At least two
shakers or fixed-position reference accelerometers are required
to test this structure effectively.

Selecting Multiple Reference Sites
Attempting to find an optimum site for a single shaker (or

reference accelerometer) disclosed that at least two reference
DOFs are required to physically separate the frequency-proxi-
mate 3rd and 4th modes. The specific problem to be solved is
the spatial separation of these two modes.

Since the 4th mode at 23.46 Hz was obscured by the 3rd mode
in all measurements examined so far, we will start our test
design by choosing a DOF from which the 4th mode can be
readily excited. Figure 15 provides insight regarding this mat-
ter.
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Figure 9. Overlay of driving-point FRFs at four shape product  “hot
spots.”

Figure 10. Zoom around 3rd and 4th modes.

Figure 11. Curve-fit of one “hot spot” driving-point FRF identifies all
six modes.

Figure 15 repeats the six mode shapes shown in Figure 7 in
a different format. The modes are shown as color contours, pre-
senting the absolute value of response shape. Note that mode
4 can be readily excited from bridge-centered DOF 88Z, which
will also provide strong excitation of the 1st mode. It will not
excite modes 2, 3, 5 or 6 as it lies on nodes for all of them. Hence
a shaker at 88Z will excite only the 1st and 4th modes.

We now need another DOF from which to excite the remain-
ing 2nd, 3rd, 5th and 6th modes. The Shape Product gives us a
means of identifying this location. Figure 16 illustrates the
Shape Product for modes 2, 3, 5 and 6 only. Note that four sym-
metrically oriented “hot spots” including DOF 65Z are indi-
cated. Hence, a reference at 88Z will drive (or respond to)
modes 1 and 4. A second reference at 65Z will interact strongly
with modes 2, 3, 5 and 6, but not with mode 4.

Most importantly, these two references provide spatial or
physical separation between modes 3 and 4 as shown by Fig-
ure 17. Note that DOF 88Z, which can excite the 4th mode
readily, is at a node for the 3rd mode, so that it will not ex-
change energy with it. In contrast, DOF 65Z can interact readily
with the 3rd mode, but is at a node of the 4th mode.

Figure 18 illustrates the benefit of this spatial separation. The
imaginary component of three driving-point FRFs are com-
pared here. The red trace is the 40Z FRF previously selected
for a single reference test. This is followed by the driving point
FRFs at 65Z and 88Z, the optimum sites for a dual reference
MIMO test.

Note that the dual reference test will excite all of the modes,
but will do so selectively. The 88Z reference will drive (or re-
spond to) only the 1st and 4th modes. The 65Z reference will
drive (or respond to) only the 1st, 2nd, 3rd, 5th and 6th modes.

Observe that the 2nd, 5th and 6th modes can receive essen-
tially equal excitation from either the single reference or dual
reference tests. The dual reference test will provide more ex-
citation to the 1st mode as well as separated and increased
excitation of the closely-coupled 3rd and 4th modes.

Figure 19 illustrates the results of applying an automated
multiple reference curve-fitter to the driving-point FRFs for
DOFs 65Z and 88Z. Note that all six modes are precisely iden-
tified.

Hence, our model bridge can be well measured by applying
shakers (or reference accelerometers) to DOFs 65Z and 88Z. The
data can be reduced by applying a multiple reference curve-
fitter using two references.

How Many Responses for Pretty Pictures?
It is normally considered good practice to use sufficient test

DOFs to characterize each Mode Shape with reasonable fidel-
ity for human viewing. Reasonable fidelity is commonly ac-
cepted to be about 10 points/cycle along any axis with sine-
like deformation.

Inspection of Figure 7 discloses that sine-like deformation

Figure 12. Curve fit of remaining 171 driving-point FRFs fails to iden-
tify the 4th mode.
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occurs along the X-axis of the bridge. The highest “spatial fre-
quency” is two sine cycles along the span. This occurs in the
38.78 Hz 5th mode. Hence we want about 20 equally-spaced
points in the X-direction. Along the Y-axis, the deformations
appear to be straight lines. Three equally-spaced points along
the Y-direction will be sufficient to verify this shape.

As shown in Figure 20, selecting every other point from our
(small) FEA mesh will result in a grid with 19 points along the
X-axis and 3 along the Y-axis. This agrees well with our rea-
sonable fidelity guidelines. Of these 57 points, 6 are fixed
boundary points that do not move for which measurements will
not be required. Since our FEA mode shapes only contained
Z-direction DOFs, our test model is reduced to 51 DOFs where
responses must be measured.

However, our ‘decimated’ model must contain DOFs 65Z and
88Z as these are the intended references to which shakers will
be applied. Since point 65 does not fall on our alternate-point
grid, we must add 65Z as the 52nd DOF and our model will
contain 58 geometric points.

We will prove the adequacy of the spatial sampling provided
by the 58 point, 52 DOF model by comparing it with the origi-
nal 175 DOF FEA and with a smaller, inadequately sampled,
model. Figure 21 illustrates a 27 point model including 21
DOFs. This model only provides 9 points along the X-axis, less
than half of those required by our reasonable fidelity rule-of-
thumb. Since the DOFs included in both of these small mod-

Figure 13. Driving-point FRF comparison of  one “hot spot” (red) with
four “second best” locations.

Figure 14. Zoom of comparison around 3rd and 4th modes.

Figure 15. Selecting a reference site to drive mode 4.

Figure 16. Selecting a site to excite modes 2, 3, 4 and 6.

els are subsets of the original FEA model’s DOFs, we can ani-
mate the FEA modes using either model.

As illustrated by Figure 22, displaying the mode shapes us-
ing the 58-point model conveys all of the information provided
by the original 175 DOF FEA model (Figure 7). Animation us-
ing the 27-point model of the structure results in some confu-
sion about the shape details, particularly for modes 4 and 5.
This validates the “10 point-per-cycle” reasonable fidelity rule-
of-thumb.
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Figure 17. Selected reference sites optimize physical separation of  fre-
quency-proximate modes 3 and 4.

Figure 19.Verification curve-fit of dual-reference measurements iden-
tifies all six modes.

Figure 18. Comparison of driving-point FRFs for single (red) and dual-
reference test designs.

Figure 20. 58 point “reasonable fidelity” model.

Baring the Minimum
Clearly, the 52 DOFs of the 58 point model are adequate to

describe the six modes. However, we are often required to sim-
ply test validate an FEA using the smallest test possible. We
need a scientific means of selecting a very small sub-set of the
FEA mode shape DOFs that will accurately represent the
shapes. The Modal Assurance Criterion (MAC) provides a tool
to accomplish this.

In particular, we will use the Auto MAC to compare each FEA
mode shape with itself and all other modes in the model. Fig-
ure 23 illustrates the Auto MAC of the FEA modes.

Note that the MAC matrix is a 6-by-6 identity matrix with 1s
on the diagonal (orange highlight) and 0s in all of the off-di-
agonal locations. These MAC coefficients compare the shapes
in the model with one another. Each row and each column rep-
resent one Mode Shape and the coefficient at each intersection
expresses the similarity of a row and column mode. A value of
1 indicates a perfect match, 0 indicates no similarity. A value
of 0.9 or greater indicates strong similarity between the two
shapes.

Since we are comparing the six modes of an FEA, we know
the MAC must be a perfect identity matrix. Each of the mode
shapes is linearly independent of all the others, as the shapes
are known to be orthogonal with respect to the model’s mass
matrix.

The MAC matrix can be plotted as shown in Figure 24. When
the Auto MAC is a perfect identity matrix, the plot shows only
unit height bars down the diagonal of the display. The preced-
ing MAC figures used all 175 DOFs of the FEA mode shapes.
We will now investigate using a much smaller number of DOFs
in the Auto Mac computation.

When the Auto MAC is calculated using only one DOF, the
resulting MAC matrix has 1s in every location, as illustrated
by Figure 25. In this instance, DOF 40Z (a single reference “hot
spot”) was used. However, it does not matter which single DOF
you select, the result is always a matrix with 1 as the value of
every element. This result makes it clear that while a single FRF
may be adequate to identify the natural frequencies and damp-
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Figure 21. 27 point, 21 DOF structural model.

Figure 22. Comparison of FEA mode shapes using 58 point (left) and
27 point (right) structure models.

ing factors of the structure, it provides no insight regarding the
mode shapes.

We would like to build a test model that can serve to vali-
date the FEA using multiple reference testing, with DOFs 65Z
and 88Z as the references. Therefore, we will repeat the MAC
calculation adding these degrees-of-freedom. The resulting 3

Figure 24. Plot of MAC matrix for all 175 DOFs.

Figure 23: MAC matrix using 175 DOF FEA model.

DOF MAC is shown in Figure 26. With these three DOFs se-
lected, the MAC matrix has far fewer significant elements. All
of the diagonal elements have a value of 1. However, six off-
diagonal elements (highlighted in orange) still have values
greater than 0.9, indicating that this set of three DOFs cannot
discriminate between mode shapes 2, 3 and 6.

We need to add additional DOFs to improve the shape se-
lectivity. As a criterion for success, we will demand that all off-
diagonal MAC elements have a value of 0.1 or less. The objec-
tive is to add as few DOFs as possible to achieve this goal. One
satisfactory solution is the addition of DOFs 36Z, 61Z, 111Z,
115Z and 140Z as illustrated by Figure 27.

Note that our criterion is solidly met. The worst-case off-

Figure 25. MAC for DOF 40Z only.

Figure 26. MAC for reference DOFs 40Z, 65Z and 88Z only.
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Figure 28. Mode shapes represented by eight DOFs.

diagonal elements have a value of 0.058. This MAC solution
indicates that these eight DOFs are sufficient to validate the
FEA model’s six mode shapes. Either a single reference test
measuring 8 FRFs referenced to a force at 40Z or a (two-shaker)
multiple reference test measuring 16 FRFs against 65Z and 88Z
force inputs may be employed. The ‘correctness’ of each test
measured mode shape may then be evaluated by calculating a
Cross MAC between the measured and FEA mode shapes.

Thus, iteratively calculating Auto MAC matrices using only
selected DOFs from the FEA modes allowed us to determine
that this FEM can be test validated by measuring only eight
responses.

However, such a ‘minimized’ test will not provide reason-

Experimental FEA . . . is clearly the most valu-
able modal test-planning tool ever placed at our
disposal.

Figure 27. MAC using eight DOFs including the references.

able fidelity for human viewing as illustrated by Figure 28.
Eight DOFs are simply insufficient to capture the distinct
graphic nature of each mode shape. But this small data base is
sufficient to mathematically determine if the physical test ob-
ject exhibits the same modal properties as the FEA which
models it.

Conclusions
The tight integration of FEA with testing software clearly

permits a modal test to be designed scientifically. Eliminating
trial-and-error experiments from the EMA setup phase saves
time and produces better testing results.

Experimental FEA will doubtless provide other benefits to
the experimentalist and the analyst as time ensues and expe-
rience increases. But, should it never solve another problem,
it is clearly the most valuable modal test-planning tool ever
placed at our disposal.
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