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Rotor Stator Interaction (RSI) is an important source of
pressure pulsations in hydro-machinery. RSI pressure pulsa-
tions induce vibrations in both stationary and rotating com-
ponents. For the first time, the time variant and spatial na-
ture of these pressure distributions (pressure mode shapes)
have been visualized. A reversible pump-turbine with 20
wicket gates was tested with runners having six and nine
blades. Numerous pressure transducers located in the prim-
ing chamber, between the runner and wicket gates, and be-
tween the runner crown and head cover were recorded. These
data were analyzed with ME’scopeVES from Vibrant Technol-
ogy, Inc. to produce animated visualization of the pressure
fields. The kinematics of RSI pressure pulsations are predicted
from elementary fluid flow principles, and the calculated pres-
sure mode shapes are shown to compare favorably with mea-
sured ones.

Model testing of hydro-machinery has long been used to
assess expected prototype unsteady behavior. Pressure pulsa-
tion measurements in the spiral case, in the priming chamber
between runner and wicket gates, and in the draft tube are
commonly made. Other measurement locations may be em-
ployed for special situations or for research and development.
Other unsteady measurements may also be made, such as forces
and moments on the wicket gates or runner. Deducing the
physical phenomena inducing unsteadiness and scaling the
measured data to full scale conditions are ongoing challenges.

Unsteady pressure at a particular location may be the sum-
mation of numerous physical phenomena. For example, in the
priming chamber, the instantaneous pressure could result from
the superposition of the effects of a nearby runner blade inter-
acting with a wicket gate. Other effects include runner blade
to wicket gate interactions that occurred earlier and now have
radiated to the same location, as well as from numerous reflec-
tions of these waves. Stochastic flow induced turbulence and
fluid flow acoustic resonances caused by the coincidence of
pulsation wavelengths with water passage dimensions inside
the machine or external to the machine as well as a large vari-
ety of fluid-structure interactions need to be considered. Even
pressures associated with test stand pumps may influence the
results. In the past, it has been necessary to infer the funda-
mental source of the pressure pulsations from measured fre-
quencies and knowledge of the frequencies of underlying
physical principles. An additional tool in this process is the
Operating Deflection Shape (ODS) technique, which permits
visualization of complex temporal and spatial patterns. These
patterns may then be compared to predictions, enabling a more
direct evaluation of causation.

Rotor/Stator Interactions
Although RSI phenomena have been studied by others,1 ad-

ditional insight has been obtained from the following analy-
sis. The RSI pressures must have a certain form to satisfy con-
sistency and fluid physics. The consistency requirement of
periodicity specifies the mathematical form of an integer num-
ber of cycles in one revolution. The fluid physics specifies that

the magnitude of pressure on a blade depends on the flow field.
These two concepts generate the form of the interaction of the
pressure field on the runner and the flow field entering the
runner. The pressure on the runner extends into the fluid and
generates the pressure field away from the runner, such as is
sensed between the runner and wicket gates.

The pressure field on the runner is required to be periodic
with the number of blades. The form of the pressure, viewed
from rotating coordinates, can be expressed as:

The value of m represents the harmonic of the pressure field.
A value of m = 0 would represent a constant pressure, with no
variation between buckets and plays no role in RSI. For m = 1,
the pressure field would consist of one sinusoidal variation in
pressure between each blade and would rotate with the run-
ner. The runner pressure field would have the form of an infi-
nite summation of these components, beginning with m = 1.

The actual magnitude of the pressure is a complicated func-
tion depending on both geometry and flow field. The magni-
tude of the pressure, therefore, remains unknown. The form of
the flow field is known, as it must satisfy a periodic require-
ment related to the number of wicket gates. The flow field also
has a harmonic content that may be expressed formally as:

The value of n represents the harmonic value of the flow field.
A value of n = 0 would represent a constant flow, with no varia-
tion of velocity or angle between wicket gates. This value has
meaning as the average value of wicket gate discharge. For n =
1, the pressure field would consist of one sinusoidal variation
in flow field between each wicket gate. The wicket gate flow
field would have the form of an infinite summation of these
components, beginning with n = 0. Further considerations can
be added to account for flow field variations related to the stay
vanes or for the spiral case.

The pressure on the runner, or in the region of the runner, is
the product of the magnitude of the flow field from the wicket
gate and the form of the pressure on the runner. Formally, this
may be expressed as:

where Amn is the amplitude of each harmonic contribution.2

This form of the RSI pressure is inconvenient as it contains
terms rotating with the runner and terms stationary with the
wicket gates. The RSI pressure can be expressed in either ro-
tating or stationary systems.

By using q = qr + Wt, where W is the shaft rotational speed, t
is time, and cosine relation cos (a) cos (b) = 1/2[cos (a + b) +
cos (a – b)], the pressure distribution, in stationary coordinates,
becomes:
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P (form of pressure on runner) = cos (mZrqr + fm), where
m = an integer
Zr = number of rotating blades
qr = angle coordinate on rotating runner

fm = phase angle for the mth harmonic

Flow field from wicket gate = {Magnitude} cos (nZsq + fn),
where: {Magnitude} represents an unknown value

n = an integer
Zs = number of stationary vanes

q = angle coordinate in stationary coordinates
fn = phase angle for the nth harmonic

P = Amn cos (nZsq + fn) cos (mZrqr + fm)
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This equation is the RSI pressure field as a function of space
and time.3 Two properties of this relationship are the charac-
teristic pressure distributions (pressure mode shapes) having
a number of spatial nodes, and the motion of the nodes. It is
convenient to use the familiar diametral pressure mode num-
ber variable, k = mZr ± nZs (the diametral mode number vari-
able has been long noted incorrectly in the literature as ±k =
m Zr – nZs but the correct form is k = mZr ± nZs). Also note
that the nodes rotate, that is have a spin speed (ss) in the sta-
tionary system with a frequency of mZrW/k .The first term
yields the familiar, k1 = mZr – nZs, having lower number of di-
ametral nodes. The second term, k2 = mZr + nZs, has a higher
number of diametral nodes. The phase angle should be a single
value for each n, m combination. A positive k value indicates
that the diametral nodes rotate in the same direction as the
runner, while negative values show counter rotation.

For the tested pump-turbine with 20 wicket gates, two run-
ners were used, with six and nine blades, respectively. The fre-
quencies and diametral mode numbers for each are tabulated
in Tables 1 and 2.

Model Testing
A scale model pump turbine was instrumented and operated

to determine RSI pressure shapes and frequencies. The instru-
ments employed were flush mounted piezoresistive pressure
transducers manufactured by PCB Piezotronics, Inc. Ten cir-
cumferential locations were instrumented in the priming cham-
ber between the runner and wicket gates, as well as ten circum-
ferential locations in the chamber between the runner and head
cover. One transducer was located between the runner and
head cover just outboard of the crown seal. Figure 1 shows the
radial location of the pressure transducers.

Data Acquisition and Processing
Operating Deflection Shape (ODS) analysis is traditionally

a technique whereby structural motions are measured using

accelerometers. Accelerations are reduced to patterns of rela-
tive deformation and visualized through animated graphics. In
this case, pressure transducers replace accelerometers result-
ing in visualization of time variant pressure distributions.

Data acquisition is performed by Dactron Inc.’s SpectraBook.
Eight channels of pressure transducer time history data are
simultaneously acquired, with one of the channels being main-
tained as a reference. Dactron’s RTPro data acquisition software
calculates, averages and saves Auto Power Spectra for each
measurement channel, plus the Cross Power Spectra between
all measurement channels and the maintained reference.

Saved Auto- and Cross-Power Spectra are imported by Vi-
brant Technology, Inc.’s ME’scopeVES modal software from
which complex valued ODS Frequency Response Functions
(ODS FRF) are calculated. As shown in Figure 2, each ODS FRF

P = Amn cos [mZrWt – (mZr – nZs)q + fm + fn] +
Amn cos [mZrWt – (mZr + nZs)q + fm – fn]

One Circumferential Location
Ten Circumferential Locations

Ten Circumferential Locations

Figure 1. Pressure transducer radial locations.

Figure 2. Typical complex valued pressure ODS FRF.

Figure 3. ODS pressure transducer geometry.
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Table 1. RSI frequencies and diametral mode numbers for 6 runner 
blades and 20 wicket gates.
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Table 2. RSI frequencies and diametral mode numbers for 9 runner 
blades and 20 wicket gates.
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Figure 4. Six-bladed head cover pressure time history/spectrum.

Figure 5. Six-bladed head cover waterfall plot.

possesses pressure magnitude and relative phase information.
Geometry is established within ME’scopeVES. Figure 3 pre-
sents the represented pressure transducer locations. Each RSI
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Table 3. Comparison of 6 bladed expected and tested pressure mode 
numbers and spin speed.
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Table 4. Comparison of 9 bladed expected and tested pressure mode 
numbers and spin speed.

Figure 6a. Six-bladed runner pressure mode at 18 times rotational speed
corresponding to n = 1, m = 3; showing k = –2.

Figure 6b. Six-bladed, k = –2, CCW rotation demonstrating the spin
speed in a series of images. Each image is 1/4 period of the pressure
pulsation frequency (BPF period). The first image also shows the pat-
tern after 2 periods, as the spin speed completes one revolution. A – t
= 0.0 & t = 6.67 ms, (0)  & (2) BPF periods. B – t = 0.83 ms, (1/4) BPF
period. C – t = 1.67 ms, (1/2) BPF period. D – t = 2.5  ms, (3/4) BPF pe-
riod.

forcing frequency possesses a global time variant pressure dis-
tribution.

By inspecting the frequency domain pressure signals, a num-
ber of dominant frequencies appear. By visualizing the pres-
sure variation at the measurement locations at the frequency
selected, a pressure characteristic shape (pressure mode shape)
appears. Modal software correlates geometric transducer loca-
tions with their respective data blocks, allowing for animation
of the pressure distribution.

The pump-turbine model was tested at 1000 rpm (W = 104.72
rad/s, f = 16.67 Hz) with a clockwise rotation. The spatial reso-
lution of 10 transducers limits the number of diametral nodes
which can be detected. Based on 10 transducers, one could
expect that up to k = 4 may be resolvable. Additionally, the
experiment was not designed to pick up diametral mode shapes
having frequencies greater than f/W = 30.

Results
Six-Bladed Runner. Figure 4 presents a typical time history

and frequency spectrum for a six-bladed head cover pressure
transducer. A waterfall plot of all head cover pressure spectra
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Figure 7a. Six-bladed runner pressure mode at 24 times rotational speed
corresponding to n =1, m = 4; showing k = 4.

is presented for information in Figure 5.
For the six-bladed runner, the lowest RSI calculated diame-

tral mode number in Table 1 occurs with n = 1 and m = 3 to
give k = –2 at a frequency of 3 ¥ 6 ¥ W. For k = –2, the spin speed
is [3 ¥ 6/(–2)] W. For the 1000 rpm test speed, 3 ¥ 6 ¥ W = 300
Hz. Figure 6a presents a graphic of the six-bladed pressure dis-
tribution that occurs at 300 Hz (18¥ runner speed) and shows
a clear k = 2 pattern. The series of graphics in Figure 6b shows
that this pattern rotates in a counter clockwise direction (op-
posite from runner rotation) and is therefore k = –2. The ex-
pected spin speed of [3 ¥ 6/(–2)] W = –9 W (150 Hz) is also con-
firmed. At the same frequency, k = 38 is also expected, but
cannot be resolved with 10 circumferential transducers.

The next highest calculated diametral mode number in Table
1 occurs with n = 1 and m = 4 gives k = +4 at a frequency of 4
¥ 6 ¥ W. For the 1000 rpm test speed, 4 ¥ 6 ¥ W = 400 Hz. Figure
7a presents a graphic of the six-bladed pressure distribution
that occurs at 400 Hz (24¥ runner speed) and shows a clear k =
4 pattern. The series of graphics in Figure 7b shows that the k
= +4 shape rotates in a clockwise direction (coincident with
runner rotation). The expected spin speed of [4 ¥ 6/(4)] W = 6
W (100 Hz) is also confirmed. At the same frequency, k = 44 is
also expected, but cannot be resolved with 10 circumferential
transducers.

Based on inspection of the data, all low k number pressure
mode shapes were found. A number of k = 0 and k = 1 mode
shapes thought to be associated with the model or model test
stand were also identified. Pressure mode shapes associated
with higher than n = 1 inflow field periodic number seem to
be of significantly lower magnitude. Table 3 summarizes the
observations.

Nine-Bladed Runner. Figure 8 presents pressure between
runner crown and head cover time history and frequency spec-

Figure 8. Nine-bladed pressure between runner crown and head cover
time history/spectrum.

Figure 9. Nine-bladed head cover waterfall plot.

Figure 7b. Six-bladed, k = +4, CW rotation demonstrating the spin speed
in a series of images. Each image is 1/5 period of the pressure pulsa-
tion frequency (BPF period).  The first image also shows the pattern
after 4 periods, as the spin speed completes one revolution. A –  t =
0.0 sec & t = 10.0ms, (0) & (4) BPF periods. B – t = 0.50 ms, (1/5) BPF
period. C –  t = 1.0 ms, (2/5) BPF period. D – t = 1.5 ms, (3/5) BPF pe-
riod.

trum for the nine-bladed test. A waterfall plot of all locations
between runner crown and head cover nine-bladed pressure
spectra is presented for information in Figure 9. For the nine-
bladed runner, the lowest diametral mode number from Table
2 occurs with n = 1 and m = 2 to give k = –2 and k = 38 at a
frequency of 2 ¥ 9 ¥ W. For k = –2, the spin speed is [2 ¥ 9/(–
2)]W. For a test speed of 1000 rpm, 2 ¥ 9 ¥ W = 300 Hz.

Figure 10a presents a graphic of the nine-bladed k = –2 pres-
sure distribution that occurs at 300 Hz (18¥ runner speed). The
series of graphics in Figure 10b shows that the k = –2 shape
rotates in a counter clockwise direction (opposite from runner
rotation). The expected spin speed of [2 ¥ 9/(–2)] W = –9W (150
Hz) is also confirmed.
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Figure 10a. Nine-bladed runner pressure mode at 18 times rotational
speed corresponding to n = 1, m = 2; showing k = –2. Figure 10b. Nine-bladed, k = –2, CCW rotation demonstrating the spin

speed. Each image is 1/4 period of the pressure pulsation frequency
(BPF period). The first image also shows the pattern after two periods,
as the spin speed is half of the m = 2 frequency. A – t = 0.0 & t = 6.67
ms (0)  & (2) BPF periods. B – t = 0.83 ms. (1/4) BPF period. C – t = 1.67
ms (1/2) BPF period. D – t = 2.5 ms, (3/4) BPF period.

The next highest diametral mode number occurs with m = 3
and n = 1 gives k = +7 at a frequency of 3 ¥ 9 ¥ W Hz. At this
frequency, 7 diametral nodes would require significantly more
than 10 transducers to spatially resolve the waveform. There-
fore, in contrast to the six-bladed runner, this diametral mode
number cannot be visualized with the current experimental
setup, but it was confirmed by data analysis beyond the scope
of this article.

Based on inspection of the data, all low k number pressure
mode shapes were found. A number of k = 0 and k = 1 mode
shapes thought to be associated with the model were also iden-
tified. Table 4 summarizes the observations.

Summary
A re-look at the RSI equations has provided additional in-

sight related to pressure mode shapes. Higher mode numbers
not previously discussed in the literature were presented.

The ODS method has been used with model testing to visu-

alize some RSI pressure mode shapes in the priming chamber
and in the chamber between the runner crown and headcover.
These time variant pressure distributions agree with expected
patterns from the RSI equations.
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