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ABSTRACT 
When Operating Modal Analysis (OMA) is used for finding 
the modal parameters of a structure, the excitation forces are 
not measured. Because the forces are not measured, the re-
sulting mode shapes cannot be used in a modal model be-
cause they are not properly scaled to reflect the mass and 
stiffness properties of the structure.  

In a traditional multi-shaker modal survey using sinusoidal 
signals, the excitation forces are also not measured and the 
mode shapes are obtained from response only data. Again, 
these un-scaled shapes cannot be used in a modal model. 

Finally, even in an FRF-based impact or shaker where the 
excitation forces are measured, calibrated measurements 
must be made in order to properly scale the mode shapes. 
Also, a driving point measurement is usually required, 
which can often be difficult to make, resulting in error prone 
mode shape scaling.   

In this paper, we show how analytical mode shapes obtained 
from finite element analysis (FEA) can be used to scale ex-
perimental mode shapes. It is shown that analytical models 
having relatively few finite elements in them can yield mode 
shapes that correlate well with experimental shapes, and are 
therefore adequate for scaling the experimental shapes. A 
straightforward least squared error method is introduced for 
scaling the experimental shapes. Examples are included that 
illustrate how FEA models of various sizes will still yield 
accurate results. 

INTRODUCTION 
Modal Analysis has become the favorite label for what is 
more accurately called Experimental Modal Analysis 
(EMA), modal testing, or a modal survey.  In an EMA, an 
experimentalist endeavors to characterize the dynamic be-
havior of a structure in terms of its modes of vibration, by 
testing the physical structure. Each mode is defined by its 
modal frequency, modal damping, and mode shape.  

Finite element analysis (FEA) is also done to characterize 
structural dynamics, by constructing a numerical model that 
simulates the structure in a computer. FEA also provides the 
modes of a structure. FEA is analytical, EMA is experi-
mental, and modes are the common ground between the 
two. 

Mode shapes are called "shapes" because they are unique in 
shape, but not in value.  That is, the mode shape vector for 
each mode does not have unique values. 

=}u{ k  mode shape vector for mode (k), (N-vector) 

N = number of DOFs of the mode shape vector. 

A DOF defines motion at a point on the structure, in a spe-
cific direction.  Each mode shape can be arbitrarily scaled to 
any set of values, but the "shape" of }u{ k  is unique. That 
is, the ratio of each shape component to any other is unique, 
but its value is not.  A mode shape is also called an eigen-
vector for this same reason.   

Alternative Dynamic Models 

The dynamic characteristics of any mechanical or civil en-
gineering structure can be adequately represented in three 
different and equivalent ways, 

1. A set of linear second-order differential equations, 
typically used in FEA. 

2. An FRF matrix model, using for EMA. 

3. A modal model, obtained from either FEA or EMA, 
with mode shapes properly scaled to preserve the mass 
and stiffness of the structure.  Modal damping, obtained 
from an EMA, completes the modal mode. 

Uses of a Modal Model 

A set of mode shapes that is properly scaled to preserve the 
mass (or inertia) and stiffness (or elastic) properties of a 
structure is called a modal model. A modal model can be 
used for different dynamic modeling and simulation studies, 
including: 

1. FRF Synthesis: Calculation of FRFs for comparison 
with experimentally measured FRFs. 

2. Structural Modifications: Investigating the effects of 
potential hardware modifications on the modes of a 
structure. 

3. Forced Response Simulation: Calculating structural 
responses due to sinusoidal, random, transient or ambi-
ent forcing functions applied to multiple DOFs. 

4. Load Path Analysis: Calculating the excitation forces 
that cause multiple measured responses. 
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5. Best Modification Search: Combining Structural 
Modifications with Forced Response Simulation to find 
the best places to modify a structure to reduce overall 
vibration levels. 

EMA and FEA are complimentary engineering tools.  If an 
EMA and an FEA on the same structure both yield the same 
modes, then presumably both must be accurately character-
izing its structural dynamics.  Both tools are useful for gain-
ing a better understanding of the dynamic behavior of struc-
tures, and in particular for understanding and solving reso-
nant vibration problems.  

Modal Mass Matrix 

The mode shapes of a finite element model are calculated in 
a manner which “simultaneously diagonalizes” both the 
mass and the stiffness matrices of the model.  This is the so-
called orthogonality property. 

When the mass matrix is post-multiplied by the mode shape 
matrix and pre-multiplied by its transpose matrix, the result 
is a diagonal matrix, as shown in equation (1).  This is a 
definition of modal mass. 

 [ ]
m][]M[][ t =φφ                  (1) 

where, 

=]M[  mass matrix (N by N). 

[ ]==φ }u{}u{}u{][ M21   mode shape matrix. 

t – denotes the transpose. 

M = number of modes in the model. 

The modal mass of each mode (k) is a diagonal element of 
the modal mass matrix, 

Modal mass: 
kk

k A
1m
ω

=    k=1,…, M  (2) 

=ωk  damped natural frequency of mode(k). 

=kA  scaling constant for mode(k). 

Equation (2) indicates that modal masses are arbitrary, and 
can also be written in terms of the modal frequency kω and 

a scaling constant kA (See [2] & [3] for details of this defi-
nition). Since the mode shape values are arbitrary, the modal 
masses must also be arbitrary in order for equation (1) to be 
valid. 

Scaling Mode Shapes to Unit Modal Masses 

One of the common ways to scale mode shapes is so that the 
modal masses are one (unity).  This is called unit modal 
mass (UMM) scaling.  When a mass matrix [ ]M  is availa-
ble, the mode vectors are scaled so that the modal mass ma-
trix is equal to an identity matrix, with diagonal elements 
equal to one and zeros elsewhere. 

However, when mode shapes are obtained experimentally, a 
mass matrix is typically not available for UMM scaling.   

EXPERIMENTAL SCALING METHODS 
Several methods do exist for UMM scaling of experimental 
mode shapes, but they all rely on calibrated experimental 
measurements. These three methods are discussed in more 
detail in [1]. 

Driving Point FRF 

This is the most commonly used method for scaling experi-
mental mode shapes. It requires that all FRF measurements 
made on a structure be properly calibrated.  This means that 
calibrated transducers are used so that each FRF is an accu-
rate measure of the amount of response motion (displace-
ment, velocity, or acceleration) at one DOF per unit of force 
applied at another DOF. 

In addition, for UMM scaling of the mode shapes, a driving 
point FRF (where the response DOF equals the excitation 
force DOF) is required.  The driving point FRF provides 
squared mode shape components for each mode, which are 
then used to scale the mode shapes. 

Triangular FRFs 

This method doesn’t require a driving point FRF measure-
ment, which can often be difficult to make, but does require 
the measurement of three other particular FRFs.  The meth-
od is called “triangular” because the three FRFs form a 
triangle of elements in the FRF matrix model.  This method 
also allows the measurement of diagonal elements of the 
FRF matrix, unlike the traditional measurement of one row 
or column of the matrix. This testing approach has advanta-
geous for testing large structures, as explained in [1]. 

Structural Modification 

This method combines the SDM algorithm with a search 
method to scale the mode shapes. It requires that an actual 
modification be made to the structure, and that the modal 
parameters of the modified be measured. Usually, a mass 
modification that changes all of the modal frequencies is 
sufficient. The “shifted frequencies” of the modified struc-
ture can be measured with a simple Auto spectrum meas-
urement. Nevertheless, finding the right location (or loca-
tions) for the modification can be difficult, especially since 
the modification must affect all of the modes. 

CORRELATING MODE SHAPES 
Every structure that vibrates will eventually stop vibrating if 
all forces causing it to vibrate are removed.  Resonant vibra-
tion will stop because some kind of damping mechanism, or 
in most cases a combination of mechanisms, will dissipate 
the energy from the structure to its surroundings.  

The numerous damping mechanisms at work in a real struc-
ture cannot be easily modeled, so damping is not included in 
most FEA models.  However, mode shapes can still be ob-
tained from a model with no damping in it. Mass and stiff-
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ness cause resonant vibration. Damping only dissipates it. 
Each analytical shape has a modal frequency associated 
with it, but no modal damping. On the other hand, an EMA 
is always done on a structure that has damping in (or 
around) it.  Damping is unavoidable when testing a real 
structure. Fortunately, most structures, especially those with 
troublesome resonances, are “lightly damped”. Consequent-
ly, the experimental mode shapes from a lightly damped 
structure will closely approximate analytical shapes from an 
FEA model with no damping in it. 

Another disparity between analytical and experimental 
mode shapes is the number of DOFs in the mode shapes. A 
typical EMA may include hundreds of measurements, which 
will yield experimental mode shapes with hundreds of 
DOFs in them. Alternatively, an FEA typically yields ana-
lytical mode shapes with thousands, even millions of DOFs 
in them.  

Although the experimental shapes will usually have far few-
er DOFs than the analytical shapes, both shapes can be 
compared at all DOFs that are common to both of them. 
Two different numerical methods have become popular for 
quantitatively comparing mode shapes, the Orthogonality 
check and the Modal Assurance Criterion (or MAC). 

Orthogonality Check 
The orthogonality check was first adopted in the early days 
when EMA was done to confirm FEA models.  An orthogo-
nality check attempts to “diagonalize” the mass matrix of 
the FEA model, using both the experimental and analytical 
mode shapes. Instead of using analytical shapes to pre- and 
post-multiply the mass matrix in equation (1), experimental 
mode shapes are used on one side, and analytical shapes on 
the other of the matrix triple product. 

The main difficulty with the orthogonality check is that the 
mass matrix and analytical shapes typically have many more 
DOFs in them than the experimental shapes. Therefore, a 
non-trivial step of reducing the size of the mass matrix to 
match the size of the experimental mode shapes is required.  
There are a number of ways for reducing the size of the 
mass matrix, but the details will not be discussed here. Nev-
ertheless, the result of an orthogonality check is this;  

Mass Matrix Orthogonality: If the experimental mode 
shapes are the same as the analytical mode shapes at DOFs 
that are common between them, the orthogonality check will 
yield a diagonal mass matrix.  

The converse of orthogonality is also true. If the orthogonal-
ity check does not result in a diagonal matrix, then the ana-
lytical and experimental mode shapes are different. 

Modal Assurance Criterion (MAC) 
A key advantage of the MAC method over the orthogonality 
check in that it only requires the mode shapes themselves. 
By eliminating the mass matrix from the calculation, one 
possible source of error is removed from the shape compari-
son.  Like the orthogonality check, MAC yields a value of 

“1” when an experimental and analytical shape are the 
same, and a value less than “1” when they are different.  

Can EMA and FEA Yield the Same Mode Shapes? 
From a theoretical point of view, experimental mode shapes 
should match analytical shapes at all common DOFs, since 
both characterize the dynamics of the same structure. How-
ever, there are a number of practical reasons why experi-
mental mode shapes won’t match analytical shapes.   

One significant reason is that the boundary conditions may 
be different between the EMA and FEA. If the boundary 
conditions are different, the mode shapes will be different. 
For example, the modes of a cantilever beam are clearly 
different from those of a free-free beam.   

It is often difficult to reproduce the same boundary condi-
tions in an EMA that were used during construction of the 
FEA model. Conversely, the flexibility of floors, walls, plat-
forms, mounts, and all types of boundaries which may be 
assumed as rigid in an FEA, may significantly affect the 
modes of the real structure. This is where the complemen-
tary nature of these two tools becomes important. 

Since they are complimentary, it makes sense to take ad-
vantage of the strengths of both FEA and EMA.  

“The ideal modal model might be one which combines ex-
perimental frequencies and damping with analytical mode 
shapes, once the experimental and analytical shapes have 
been correlated at common DOFs.” 

MODES OF A BEAM STRUCTURE 
The experimental modes of the beam structure shown in 
Figure 1 will be compared with its analytical mode shapes. 
The beam was constructed out of three 3/8 inch thick alumi-
num plates fastened together with cap screws. The overall 
dimensions of the beam are 12 in. long by 6 in. wide by 4.5 
in. high. 

The experimental modes were obtained from a set of 99 
FRFs which were acquired during an impact test of the 
beam structure.  During the test, the structure was impacted 
at the same DOF, and a roving tri-axial accelerometer was 
used to measure its 3D response at 33 points. The resulting 
experimental mode shapes had 3 DOFs per point, for a total 
of 99 DOFs. 

For a first comparison of shapes, analytical modes were 
obtained from an FEA model with 161 points and 132 Quad 
plate elements, as shown in Figure 2. The analytical mode 
shapes have 6 DOFs (3 translational and 3 rotational) per 
point, for a total of 996 DOFs. 

The beam structure was tested while resting on a foam rub-
ber base, which closely approximates a free-free boundary 
condition. The modes of the FEA model were also calculat-
ed using free-free boundaries.  
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Figure 1 A. 164 Hz Mode. 

 
Figure 1 B. 224 Hz Mode. 

 
Figure 1 C. 347 Hz. 

 
Figure 1 D. 460 Hz Mode. 

 
Figure 1 E. 492 Hz Mode. 

 
Figure 1 F. 634 Hz Mode. 

 
Figure 1 G. 1108 Hz Mode. 

 
Figure 1 H. 1210 Hz Mode. 
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Figure 1 I. 1322 Hz Mode. 

 
Figure 1 J. 1553 Hz Mode. 

The analytical shapes have about 10 times the number of 
DOFs as the experimental shapes, but the analytical shapes 
do have translational DOFs at the same 33 points as the ex-
perimental shapes. These common DOFs were then used for 
comparing shapes, and for scaling the experimental mode 
shapes to UMM shapes. 

 

 
Figure 2. FEA Model with 132 Quad Plate Elements. 

Experimental & Analytical Shape MAC Values 
The FEA model was solved for its first (lowest frequency) 
20 modes, and 10 of those mode shapes were matched with 
the 10 experimental mode shapes.  Only translational DOFs 
of the analytical shapes at the same 33 points as the experi-
mental shapes were used for comparison. Table 1 lists the 
analytical and experimental modal frequencies, as well as 
the MAC values between the 3D shapes, with shape compo-
nents in the X, Y & Z direction at each of the 33 test points.  

Mode 
Analytical 
Frequency 

(Hz) 

Experimental 
Frequency 

(Hz) 
3D 

MAC 

1 151.80 164.65 0.957 

2 212.38 224.13 0.958 

3 320.39 347.46 0.950 

4 419.17 460.71 0.933 

5 462.64 492.83 0.951 

6 593.96 634.37 0.938 

7 1.0377E3 1.1081E3 0.905 

8 1.1327E3 1.2101E3 0.895 

9 1.1885E3 1.3223E3 0.852 

10 1.4093E3 1.5539E3 0.829 

Table 1.  Analytical vs. Experimental Shape Comparison. 

Table 2 lists the MAC values using shape components in the 
X, Y and Z directions only.  

 

Mode X Only 
MAC 

Y Only 
MAC 

Z Only 
MAC 

1 0.979 0.940 0.975 

2 0.976 0.237 0.947 

3 0.335 0.003 0.985 

4 0.184 0.077 0.968 

5 0.876 0.875 0.982 

6 0.636 0.013 0.973 

7 0.275 0.000 0.961 

8 0.252 0.648 0.960 

9 0.449 0.036 0.928 

10 0.056 0.010 0.928 

Table 2.  MAC Values for X, Y, Z Directions Only. 
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Table 1 shows that even though the analytical modal fre-
quencies are quite different from the experimental frequen-
cies, the mode shapes are very similar (.90 and above) for 
all but the highest frequencies.  

Table 2 reveals that when only the Z directions of the mode 
shapes are used, the analytical and experimental shapes 
agree even more closely than the 3D shapes.  Additionally, 
the X and Y Only MAC values indicate that the shapes 
don’t agree very well in those directions.  This is best ex-
plained by that fact that the dominate motion of all of the 
shapes (except Mode #1) is in the Z direction. 

Since motion in the X & Y directions is significantly less 
the Z direction, it can be assumed that there is error in the X 
& Y directions of the experimental shapes. Nevertheless, we 
can conclude that there is a strong correlation between all 
10 analytical and experimental shapes in the Z direction, 
where the motion is dominant. 

COMPARING FRFs 
Another way of comparing analytical and experimental re-
sults is to synthesize FRFs using the modal parameters, and 
overlay the synthesized FRFs on the experimental FRFs. To 
do this, we will use a hybrid modal model. 

Hybrid Modal Model: This model consists of the experi-
mental modal frequencies & damping for each mode, to-
gether with analytical mode shapes that are UMM scaled. 

Figure 3 shows two examples of synthesized FRFs using the 
hybrid modal model overlaid on experimental FRFs in Bode 
format.  In both cases, the synthesized FRFs are in close 
agreement with the experimental FRFs. 

SMALLER SIZED FEA MODEL 
To see how well the analytical shapes from a smaller sized 
FEA model compare with the experimental shapes, we built 
a second model with Quad plate elements only between the 
33 test points on the experimental model. Figure 4 shows 
the model, with 20 Quad plate elements in it. 

 

Figure 4. FEA Model with 20 Quad Plate Elements. 

 

 
Figure 3A Overlaid Synthesized and Measured FRFs 

 Between Top & Bottom Plate. 

 
Figure 3B Overlaid Synthesized and Measured FRFs 

 Between Top & Back Plate. 

We then solved for the modes of this model and compared 
them with the experimental shapes in the Z direction only. 
Those results are shown in Table 3. 

For this smaller model, there is an even greater disparity 
between the analytical and experimental modal frequencies.  
However, the Z direction MAC values indicate that the ana-
lytical and experimental mode shapes are still in very close 
agreement. 

An accurate hybrid modal model can again be constructed 
by combining the experimental frequencies and damping 
with the UMM scaled mode shapes from the smaller FEA 
model. 
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Mode 
Analytical 
Frequency 

(Hz) 

Experimental 
Frequency 

(Hz) 
Z Only 
MAC 

1 138.02 164.65 0.966 

2 203.95 224.13 0.940 

3 265.68 347.46 0.984 

4 387.33 460.71 0.921 

5 397.64 492.83 0.913 

6 546.45 634.37 0.966 

7 832.14 1.1081E3 0.956 

8 913.14 1.2101E3 0.946 

9 1.05E3 1.3223E3 0.928 

10 1.2148E3 1.5539E3 0.882 

Table 2.  Shape Comparison from Smaller FEA Model. 

MODE SHAPE SCALING 
Having seen that it is relatively straightforward to obtain 
analytical shapes that correlated well with experimental 
shapes, we now turn to the topic of this paper, namely scal-
ing a set of experimental shapes to UMM using a set of ana-
lytical shapes. Scaling assumes that each experimental mode 
shape has already been correlated with an analytical shape 
that is UMM scaled. 

The scale factor SFe(k) required to scale each experimental 
shape using an analytical shape is the solution to the equa-
tion, 

     { } { })k(U)k(SF)k(U aee =    (1) 

where: 

 k = 1, 2 ,…, modes 

{ }=)k(Ue experimental mode shape (N-vector) 

{ }=)k(Ua analytical mode shape (N-vector) 

 N = number of common DOFs 

The analytical mode shape vector { })k(Ua is real valued, 
and for that reason is called a normal mode shape.  The 
experimental mode shape { })k(Ue is complex valued, 
with each shape component having real and imaginary parts.  
Therefore, the scale factor SFe(k) is also complex. 

Equation (1) is a set of equations, one for each DOF that is 
common between the analytical and experimental shapes.  
The least squared error solution to equation (1) is, 

       
{ } { }

{ }2
e

a
T

e
e )k(U

)k(U)k(U)k(SF =             (2) 

where: 

T = transposed conjugate of the complex vector. 

Equation (2) provides the scale factor which scales each 
experimental shape { })k(Ue to UMM. 

Equation (1) can also be re-written so that { })k(Ua is 

scaled instead of { })k(Ue , 

     { } { })k(U)k(SF)k(U eaa =    (3) 

where: 

=)k(SFa scale factor for scaling { })k(Ua to { })k(Ue  

The least squared error solution to equation (3) is, 

        
{ } { }

{ }2
a

e
T

a
a )k(U

)k(U)k(U)k(SF =             (4) 

By comparing equations (1) and (3), it is clear that, 

        
)k(SF

1)k(SF
e

a =         (5) 

The product of these two scale factors is, 

        
{ } { }
{ } { }

2

2
a

2
e

a
T

e
ae )k(U)k(U

)k(U)k(U
)k(SF)k(SF =      (6) 

This is the formula for the MAC value between two 
shapes. In other words, the product of the two mode shape 
scale factors is a number between “0” and “1”. 

If the two mode shapes have the same “shape”, the MAC 
value will be “1”, and the two scale factors are inverses of 
one another according the equation (5).  If, however, the two 
shapes are different, the two scale factors will not be invers-
es of one another.  In the worse case, if the two shapes are 
“orthogonal” to one another, both equations (2) and (4) 
give scale factors of “0”.  Clearly, both equations (2) and 
(4) say that when two shapes are different from one another, 
one shape cannot be scaled to match the other. 

To test equations (2) and (4), the experimental mode shapes 
extracted from a set of FRFs measured on the beam struc-
ture in Figure (1) were UMM scaled using the analytical 
shapes for the beam.  The experimental mode shapes are 
called Residue mode shapes since they were obtained by 
curve fitting the set of FRFs with a specific Reference DOF 
(impact point and direction) of 15Z. These shapes are clear-
ly not UMM mode shapes. 
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Mode )k(SFe  )k(SF
1

a
 

Product of 
Scale 

Factors 
1 (0.0432,-176) (0.0452,-176) 0.955 

2 (0.0281,-176) (0.0293,-176) 0.959 

3 (0.00984,3.73) (0.0104,3.73) 0.946 

4 (0.0123,0.11) (0.0132,0.11) 0.932 

5 (0.00807,-0.32) (0.00849,-0.32) 0.950 

6 (0.0103,180) (0.0109,180) 0.945 

7 (0.00291,1.63) (0.00321,1.63) 0.906 

8 (0.00305,179) (0.00341,179) 0.894 

9 (0.00693,-178) (0.00813,-178) 0.852 

10 (0.00744,179) (0.00897,179) 0.829 

Table 3.  Scale Factors between Experimental  
and Analytical Mode Shapes. 

The scale factors )k(SFe and )k(SFa  for the 10 shapes are 
listed in Table 3.  Notice that the product of the scale fac-
tors closely matches the MAC values in Table 1. 

The scale factors )k(SFe  from Table 3 were used to scale 
the experimental shapes, and FRFs were synthesized using 
the experimental modal model for comparison with corre-
sponding FRF measurements. A typical synthesized FRF is 
overlaid on a measured FRFs in Figure 4. 

 
Figure 4. Overlaid Synthesized and Measured FRFs 

 Between Top & Back Plate. 

CONCLUSIONS 
Mode shape scaling is important if a modal model is to be 
used for further modeling and simulation studies.  While 
EMA and FEA can both provide modal parameters, the 
combination of experimental frequencies and damping with 

analytical mode shapes into a hybrid modal model provides 
the best use of both the EMA and FEA data. 

It was shown that a very small FEA model can provide 
mode shapes that correlate well with experimental shapes, 
even though the modal frequencies are substantially differ-
ent.  The accuracy of the hybrid modal model was verified 
by overlaying synthesized and experimental FRFs. 

A formula for scaling experimental shapes from a set of 
FEA shapes was presented, and its close relationship to the 
MAC formula was also shown. Finally, a set of experi-
mental residue mode shapes was UMM scaled using a set of 
FEA mode shapes. The accuracy of the resulting experi-
mental modal model was again verified by overlaying syn-
thesized and experimental FRFs. 
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