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EDITORIAL

This month’s issue is about computer-
aided engineering, or CAE. Most engi-
neering work today relies heavily on the
use of digital computers, and most engi-
neering organizations employ a variety of
CAE tools to develop new products, in-
crease the performance of existing prod-
ucts and troubleshoot problems that oc-
cur in the field. Modal analysis and
finite-element analysis are two popular
CAE tools.

The terms in the title of this editorial
require a brief explanation. Modal analy-
sis has become the favorite label for what
is more accurately called experimental
modal analysis (EMA), or modal testing,
or from the old days, a modal survey.
EMA is the activity of an experimental-
ist who endeavors to characterize the
dynamic behavior of a structure in terms
of its modes of vibration.

Finite-element analysis (FEA) is also
done to model structural dynamics, but
with a computer program instead of by
experiment. FEA is the activity of a struc-
tural analyst and can also provide the
modes of a structure. FEA is analytical,
EMA is experimental, and modes are the
common ground between the two.

The word ‘versus’ in the title has two
meanings, both of which apply in this
case. First, it means, “contrasted with” or
“compared to.” But it also has a second
meaning according to my dictionary. In
“law and sports,” it means ‘against’ or
“opposed to.” Now, I don’t believe that
either EMA or FEA has much to do with
law or sports, but I’ve experienced the
effects of the second meaning on several
occasions during my career as an experi-
mental practitioner.

In fact, these two engineering tools are
complimentary. If an EMA and an FEA on
the same structure both yield the same
modes, then presumably both must be
accurately characterizing its structural
dynamics. One should not be used to the
exclusion of the other. Both tools are use-
ful for gaining a better understanding of
the dynamic behavior of physical struc-
tures, and in particular for simulating
and ultimately solving resonant vibration
problems.

FEA has grown steadily in popularity
as an engineering tool since the 1960s. In
1965, the NASTRAN program was devel-
oped by NASA to support the engineer-
ing development of space vehicles. Since
then, many companies have improved
upon and commercialized NASTRAN,
and many other FEA programs have been
commercialized as well.

In the early days when EMA was called

a modal survey, it was done primarily to
validate the accuracy of an FEA model.
Modal surveys used multiple shakers
driven with sinusoidal signals and at-
tempted to excite structures one mode at
a time. These systems were usually large
and expensive, and a complete modal
survey was time consuming.

Today, EMA is done much differently.
Starting in the 1970s, the development of
lower cost multichannel data acquisition
systems, the use of the FFT (fast-Fourier
transform) algorithm, and digital signal
processing has fostered the widespread
use of broadband structural testing.
Broadband excitation is now done with
an impact hammer or with shakers driven
by random signals. Many modes are ex-
cited simultaneously, and further pro-
cessing is used to extract their parameters
from the data. Both the cost and the time
required to perform an EMA have been
drastically reduced with this new ap-
proach.

EMA is still used to validate FEA mod-
els, but it is also heavily used for trouble-
shooting noise and vibration problems in
the field. Once an FEA model has been
validated, it can be used for a variety of
static and dynamic load simulations. An
equivalent model in the form of modal
parameters, called a modal model, can
also be used for simulations.

The most common simulation is to ap-
ply anticipated static loads to a model to
see whether or not the structure is strong
enough to support the loads without
breaking. For static load simulation, only
the stiffness properties of the structure
are required. These are represented in the
model with a stiffness matrix, which is
generated by the FEA program. For a dy-
namic simulation, the inertia properties
are also required, which are modeled
with a mass matrix.

When an FEA model contains both
mass and stiffness, the differential equa-
tions of motion defined by these matrices
can be solved for the modes of the struc-
ture. Modes describe resonances. If reso-
nances are excited, they can be very dam-
aging to a structure, which is why we
often want to know something about
them.

Each mode is defined by three differ-
ent kinds of parameters: its modal (or
resonant) frequency, its modal damping,
and its mode shape. Each mode is di-
rectly influenced by the mass and stiff-
ness of the structure and its boundary
conditions (more on these later). Mass
and stiffness are calculated from the ge-
ometry and the properties of the materi-

als, density, elasticity (strength), and
Poisson’s ratio (squeeze effect), out of
which the structure is made.

But what about damping? Certainly,
every structure that vibrates will eventu-
ally stop vibrating if all of the forces caus-
ing it to vibrate are removed. Vibration
will stop because some kind of damping
mechanism, or in most cases a combina-
tion of mechanisms, will dissipate the
energy from the structure to its surround-
ings. In the earth’s atmosphere, one
damping mechanism that is always
present is the surrounding air. All struc-
tures that vibrate in the atmosphere are
acting like stereo speakers; that is, they
are pushing air with their surfaces as they
vibrate.

This type of damping is primarily a
viscous mechanism, similar to the way an
automotive shock absorber behaves. Vis-
cous damping is modeled as a constant
multiplied by velocity. In the case of a
structure moving the surrounding air, the
velocity would be the velocity of the sur-
face of the structure. This is all fine and
good, but how can the viscous damping
of the surrounding air be modeled, let
alone the other damping mechanisms
that might be at work in a structure? The
answer is, damping can’t be easily mod-
eled, so it’s not included in most FEA
models. But modes can still be obtained
from a model with no damping in it. In-
ertia and stiffness cause resonant vibra-
tion. Damping only dissipates it.

Unlike modeling, an EMA is always
done on a structure that has damping in
or around it. Damping is unavoidable
when testing a real structure. So, how can
experimental modes, which include the
effects of damping, be compared with
analytical modes that don’t? The quick
answer, for those of you who aren’t wor-
ried about the details, is that they can be
compared. Most structures, especially
those with troublesome resonances, are
“lightly damped.” Consequently, experi-
mental mode shapes will closely approxi-
mate analytical shapes.

Moreover, resonances usually cause
large amplitudes of response, which
show up as peaks in the frequency spec-
trum of a response measurement. By
means of some kind of curve fitting pro-
cess (there are many), EMA can provide
accurate estimates of modal frequency
and damping from response spectrum
measurements.

There is usually a large disparity be-
tween the sizes of experimental and ana-
lytical mode shapes, but there are ways
of dealing with it. A typical EMA may
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include hundreds of measurements,
which will yield experimental mode
shapes with hundreds of components or
DOFs (degrees-of-freedom). A mode-
shape DOF is the deflection of the struc-
ture at a point in a direction. On the other
hand, an FEA typically yields analytical
mode shapes with thousands or even
millions of DOFs in them. Each analyti-
cal shape has a modal frequency associ-
ated with it but no modal damping.

Although experimental shapes will
have far fewer DOFs than analytical
shapes, both shapes should be compa-
rable at all DOFs that are common be-
tween them. Two different methods have
become popular for quantitatively com-
paring mode shapes – the orthogonality
check and the modal assurance criterion,
or MAC.

The orthogonality check was first
adopted in the early days when EMA was
done to confirm FEA models. An orthogo-
nality check attempts to ‘diagonalize’ the
mass matrix of the FEA model, using both
the experimental and analytical mode
shapes. There are more details required
to completely understand this process,
including the nontrivial step of reducing
the size of the mass matrix to match the
experimental mode shapes. Nevertheless,
the end result is this: if the experimental
mode shapes are the same as the analyti-
cal mode shapes, then the orthogonality
check will yield a diagonal matrix, also

called the modal mass matrix.
On the other hand, the MAC method

only requires the mode shapes them-
selves. By eliminating the mass matrix
from the calculation, one possible source
of error is removed from the shape com-
parison. MAC also yields a diagonal ma-
trix when the experimental and analyti-
cal shapes are the same.

When either the orthogonality check or
MAC yields a diagonal matrix, then both
sides (the experimentalists and analysts)
are happy. When either check fails to
yield a diagonal matrix, then the finger
pointing begins. This is where I’ve expe-
rienced the second meaning of ‘versus.’
Which mode shapes are correct? Of
course, each side believes in its own re-
sults.

There are a number of reasons why
experimental mode shapes don’t match
analytical shapes. A significant one is
that the boundary conditions may be dif-
ferent between the EMA and FEA. If the
boundary conditions are different, the
mode shapes will be different. For ex-
ample, the modes of a cantilever beam are
clearly different from those of a free-free
beam. It is often difficult to reproduce in
an EMA the same boundary conditions
that were used during construction of the
FEA model. Conversely, the flexibility of
floors, walls, platforms, mounts, and all
types of boundaries that may be assumed
as rigid in an FEA, may significantly af-

fect the modes of the real structure. This
is where the complementary nature of
these two tools becomes important.

The structural dynamicist must ask
why the results are different. Is there a
substantial modeling error, or is the ex-
perimental error significant? Having both
tools available gives the dynamicist the
advantage of verifying modal frequencies
and measuring modal damping with EMA
and defining mode shapes with a large
number of DOFs from FEA. The ideal
modal model might be one that combines
experimental frequencies and damping
with analytical mode shapes once the
experimental and analytical shapes have
been matched at common DOFs.

In the past, many engineering organi-
zations have separated EMA from FEA,
have located experimentalists and ana-
lysts in different departments and build-
ings, and have not supported cooperation
between the two groups. Fortunately, this
is changing. Many organizations are now
starting to benefit from the convergence
of EMA and FEA. Since they are compli-
mentary, it makes sense to take advantage
of the strengths of each tool.

Structural dynamicists of the future
will be better equipped to understand
and solve structural noise and vibration
problems when they have both EMA and
FEA in their toolboxes.


