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ABSTRACT 
In recent years, a variety of numerical approaches have been 
proposed for modifying a Finite Element Analysis (FEA) 
model so that its modal parameters more closely match 
those obtained from experiment. Such factors as real world 
boundary conditions and joint stiffnesses are often difficult 
to model correctly in an FEA model, and damping is usually 
left out of the model all together. 

The Structural Dynamics Modification (SDM) method was 
commercialized back in the 1980’s as a method for predict-
ing the effects of structural modifications on the modes of a 
structure.  In its more recent implementation, it utilizes the 
same finite elements to model structural modifications as 
those used in FEA modeling. SDM is a fast and efficient 
algorithm that can be used for updating FEA models using 
experimental results. 

In this paper, we show in several example cases how SDM 
can be used together with a search procedure to yield a list 
of the “10 Best” FEA model changes that cause its modes to 
most closely match a set of experimental modes.  Some 
FEA model changes are always more physically realizable 
than others, and by providing a list of the “10 Best” solu-
tions instead of just one solution, a realistic model updating 
solution can be chosen. 

INTRODUCTION 

Today, most companies that manufacture mechanical prod-
ucts, or products with mechanical parts in them, are relying 
more and more on computer modeling and simulation, 
called Finite Element Analysis (FEA), to develop their 
products more quickly.  In the automobile industry for ex-
ample, most companies are heavily using FEA modeling 
and simulation tools to help bring new car models to market 
in less time, thus giving them a competitive edge. 

FEA models are usually built in the early stages of product 
development in order to gain a preliminary understanding of 
the static and dynamic behavior of the mechanical structures 
involved in the design. FEA models have been used since 
the early 1960’s for performing static loads analyses. Static 
loads are applied to the model to locate the areas of high 
stress and strain, where the structural material is most likely 
to fail. 

More recently, FEA models are being used to simulate the 
dynamic responses of a structure under a variety of operat-
ing conditions.  Dynamic loads can often exceed static loads 

by orders of magnitude, thus causing unacceptable levels of 
noise and vibration, and perhaps unexpected structural fail-
ures. 

Before using an FEA model for simulation work, it should 
be correlated with experimental data to ensure that it models 
the dynamics of the real structure.  If it does not model the 
dynamic characteristics of the real structure, then it must be 
updated so that its dynamic responses more closely match 
the dynamics of the real structure. 

 
Figure 1. Beam Structure Showing 33 Test Points. 

 
Figure 2. FEA Model with 80 Quad Plate Elements. 
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Experimental Modal Analysis (EMA), also called modal 
testing or a modal survey, is performed on a real structure 
in order to characterize its dynamic behavior in terms of its 
modes of vibration. Each mode is defined by its modal fre-
quency, modal damping, and a mode shape. 

An FEA model also provides the modes of vibration of the 
structure. FEA is analytical (using a computer model), and 
EMA is experimental (requiring the testing of a real struc-
ture).  Modes are the common ground by which these two 
engineering activities can be compared for accuracy. 

If both an EMA and FEA are done correctly, then both 
should yield the same modes of vibration.  However, in 
practice this rarely occurs, even for the simplest of struc-
tures. Since EMA produces a set of modes for a real struc-
ture, these modes can be used for updating an FEA model so 
that its modes more closely match the modes of the real 
structure. 

In recent years, a variety of numerical approaches have been 
proposed for modifying an FEA model so that its modal 
parameters more closely match those obtained from experi-
ment.  This is called FEA Model Updating. 

Advantages of EMA and FEA 

Fortunately, EMA and FEA are complementary and each 
has advantages over the other. EMA can accurately measure 
the modal frequency & damping of the modes of a real 
structure.  However, for practical reasons EMA mode 
shapes typically have far fewer DOFs (a DOF is motion at a 
point in a direction) than FEA mode shapes. FEA mode 
shapes also contain rotational DOFs, which are usually not 
measured experimentally. 

Even though FEA mode shapes may have many thousands 
of DOFs, their associated modal frequencies are usually less 
accurate than experimental frequencies.  On the other hand, 
modal damping is typically not modeled at all, but can al-
ways be obtained experimentally. 

To summarize, 

• EMA is good for obtaining accurate modal frequency & 
damping. 

• FEA is good for obtaining mode shapes with thousands 
of DOFs, including rotational DOFs.  

Modal Model 

Although mode shapes are eigenvectors and therefore have 
no unique values, a set of properly scaled mode shapes pre-
serves the mass (inertia), stiffness (elastic) and optionally 
the damping properties of a structure. This set of modes is 
called a modal model. 

Modes are solutions to the homogeneous equations of mo-
tion for a structure, 

0)t()t()t( =++ KxxCxM   (1) 

Equation (1) is a set of n simultaneous second order linear 
differential equations in the time domain, where x(t) is the 
displacement vector, and the dots above x(t) denote differ-
entiation with respect to time.  M, C, and K are the (n by n) 
real symmetric mass, damping and stiffness matrices respec-
tively. 

Orthogonality 

Equation (1) is a “force balance” between the internal forc-
es within a structure when it undergoes resonant vibration 
after all external forces have been removed. If the damping 
forces, represented by )t(xC , are assumed to be insignifi-
cant compared to the inertia )t(xM  and stiffness )(tKx
forces, or if C is assumed to be proportional to the mass 
M and stiffness K , then the mode shapes are calculated in 
a manner which “simultaneously diagonalizes” both the 
mass and the stiffness matrices.  This is the so-called or-
thogonality property. 

When the mass matrix is post-multiplied by the mode shape 
matrix and pre-multiplied by its transpose matrix, the result 
is a diagonal matrix, 

[ ]
 m][]M[][ t =φφ  (2) 

where, 

=]M[  (n by n) mass matrix 

[ ]==φ }u{}u{}u{][ m21   (n by m).mode shape matrix 

t – denotes the transpose 
m = number of modes in the model 

This diagonal matrix is called the modal mass matrix. 
Modal masses, like mode shapes, are arbitrary in value.  
One of the common ways of scaling mode shapes is so that 
the modal masses are one (unity).  This is called unit modal 
mass (UMM) scaling.  The modal mass matrix then be-
comes an identity matrix, with diagonal elements equal to 
one and zeros elsewhere. 

When the mode shapes are scaled to UMM, the orthogonali-
ty property for the stiffness matrix becomes. 

[ ]
 2t ][]K[][ Ω=φφ  (3) 

where, 

[ ]
 2Ω  = (m by m) modal stiffness matrix 

Each diagonal term in the modal stiffness matrix is the un-
damped natural frequency squared of a mode. 

Computing the Modes of an FEA Model. 

An FEA dynamic model is essentially a set of differential 
equations (1) that describe the dynamic behavior of a me-
chanical structure. An FEA model will often contain thou-
sands, sometimes millions of differential equations. Each 
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equation describes motion for a single DOF (a Degree Of 
Freedom is motion at a point in a direction). Consequently, 
the mass & stiffness matrices of an FEA model are typically 
very large. 

Modes of vibration are computed from and FEA model by 
solving a so-called eigensolution problem. That is, modal 
frequencies are computed as eigenvalues, and mode shapes 
are computed as eigenvectors of the differential equations. 

Very large numbers of equations are usually required to 
obtain sufficient accuracy with an FEA model. This means 
that the mass & stiffness matrices of the FEA model are 
very large, and therefore solving for an FEA eigensolution 
requires a large computer with lots of memory. 

Structural Dynamics Modification (SDM) 

The SDM method, also called Eigenvalue Modification or 
Diakoptics, was originally developed as a way to more 
quickly calculate the modes of an FEA model [1], [2]. 

SDM was first commercialized in 1980 as a method for pre-
dicting the effects of structural modifications (changes in its 
mass, stiffness, & damping properties) on the modes of a 
structure. Structural Measurement Systems, Inc., (SMS) a 
Santa Clara, CA engineering software company, was the 
first company to commercialize the use of the SDM method 
for use with experimental modal data [4]. 

Since FEA models typically have no damping, for FEA 
model updating the damping term in the equations of mo-
tion (1) will be ignored. 

With mass and stiffness modifications, the equations of mo-
tion become, 

[ ] [ ] 0)t(KK)t(M =∆++∆+ xxM   (4) 

where: 

=∆ ]M[  mass modification matrix (n by n). 

=∆ ]K[  stiffness modification matrix (n by n). 

Whereas equation (4) is a set of differential equations, the 
eigenvalues (modal frequencies) and eigenvectors (mode 
shapes) are found as solutions to the algebraic equation, 

[ ][ ] 0)(XKKM 2 =ω∆++ω∆+− M (5) 

where: 

=ω)(X  Fourier transform of the displacement. 

=ω frequency variable. 

An FEA model can typically create thousands of equations 
(5), and solving them for the new modes due to a modifica-
tion can be time consuming. 

The SDM method transforms equations (5) to the modal 
domain by taking advantage of the orthogonality property in 
equations (2) & (3) of the mode shapes of the unmodified 
structure. Using orthogonality, equations (5) become, 

[ ] 0)(Yˆˆ 2 =ωΚ+ωΜ−    (6) 

where: 

[ ] ][]M[][Iˆ t φ∆φ+=Μ 
  

[ ] ][]K[][ˆ t2 φ∆φ+Ω=Κ 
  

SDM solves for the eigenvalues of equation (6). This equa-
tion contains (m by m) matrices instead of (n by n).matrices 
as in equation (5), and m (the number of modes) is usually 
much smaller than n (the number of physical DOFs). There-
fore, literally thousands of SDM solutions to equation (6) 
can be found in the same time that it takes to calculate one 
solution to equation (5). 

Computing Modes Using SDM. 

Whereas an FEA eigensolution requires very large matrices 
with thousands to millions of DOFs, SDM typically solves 
for an eigensolution using matrices with less than 100 
DOFs. 

Since its eigensolution problem size is much smaller, SDM 
can solve for the modes due to thousands of potential ele-
ment modifications in the same time that it takes to solve for 
one FEA eigensolution.  Furthermore, SDM can be imple-
mented in software running on a Desktop or Laptop PC. 
These two advantages, 

1. Computational speed. 
2. Small computer memory requirement. 

make SDM ideal as a practical tool for FEA model updat-
ing. 

FEA MODEL UPDATING METHOD 

Our new FEA model updating method (called SDM Target-
ed Model Updating) uses the SDM method together with a 
search procedure to yield a list of the “10 Best” FEA model 
updates that cause its modes to more closely match a set of 
experimental modes.  Some FEA model changes are more 
physically realizable than others, so by providing a list of 
the “10 Best” solutions instead of just one solution, a more 
realistic model updating solution can be chosen from the 
list. 

Changes to Finite Element Properties 

It is usually too difficult to make changes directly to com-
ponents of the mass and stiffness matrices, and more im-
portantly, those changes may correspond to structural 
changes that are not physically realizable.  A more practical 
approach is to change the physical properties of the finite 
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elements themselves in the FEA model, and translate those 
changes into mass and stiffness changes. 

Typical finite element property changes that are physically 
realizable are, 

• Point translational & rotational masses. 
• Translational & rotational spring stiffnesses. 
• Translational & rotational damping. 
• Rod element cross sectional areas. 
• Beam element cross sectional areas & inertias. 
• Plate element thicknesses. 
• Rod, beam, plate or solid element Elasticity, Poissons 

ratio, and density material properties. 

A typical FEA model may contain several different kinds of 
elements, each kind having the above properties. Spring 
elements, plate elements, and solid brick elements are used 
in the examples that follow. 

Cost Function 

FEA model updating is concerned with changing the phys-
ical properties of the finite elements of an FEA model so 
that its modes more closely match a set of experimental 
modes. 

To be closely matched, either the modal frequencies and/or 
the mode shapes of the updated FEA model should be as 
“close” as possible to the experimental modal parameters. 
Therefore, a numerical measure of the “closeness” of modal 
parameters is required. 

The following cost function quantifies errors in both modal 
frequencies and mode shapes, 

( ) ( )
( )( )∑

= Ω
Ω−Ω

=
m

1k E

EA

)k(MAC*k
kk

Cost    (7) 

Where: 

( )kAΩ =analytical modal frequency for mode (k) 

( )kEΩ  = experimental modal frequency for mode (k) 

( )kMAC = Modal Assurance Criterion between the ana-
lytical & experimental mode shapes for mode (k) 

The Modal Assurance Criterion (or MAC) is essentially a 
normalized dot or scalar product between a pair of mode 
shapes.  Its values range between 1 (meaning that the two 
shapes are alike) and 0 (meaning that they are different). 

10 Best Solutions 

To find the 10 Best solutions, we use an exhaustive search 
using a prescribed number of steps between prescribed low-
er and upper bounds, for each physical parameter to be up-
dated in the FEA model. The 10 solutions that have the 10 
lowest Cost Function values are saved.  This approach has 
several advantages, 

• The speed of the SDM algorithm allows an exhaustive 
search of the entire solution space. That is, all combina-
tions of parameter values stepped between the lower & 
upper limits of each parameter are evaluated. 

• The exhaustive search finds the solution with the true 
minimum Cost, thus avoiding the potential problem of 
getting “stuck” at local minimum values of the Cost 
Function. 

• 10 Best solutions provide a choice of modifications, 
some of which may be more physically realizable than 
others. 

• 10 Best solutions show the sensitivity of the structure to 
different potential modifications. 

This 10 Best solution procedure does not require eigen-
solutions of the original FEA equations. Therefore, it can be 
implemented on a desktop or laptop PC using the FEA 
model, its analytical mode shapes, and a set of experimental 
mode shapes. 

Example #1: UPDATING PLATE THICKNESSES 

In this example, the experimental modes of the beam struc-
ture shown in Figure 1 will be used to update the thickness 
of some of the plate elements in the FEA model shown in 
Figure 2. The beam was constructed using three 3/8 inch 
nominally thick aluminum plates fastened together with cap 
screws. The overall dimensions of the structure are 12 in. 
long by 6 in. wide by 4.5 in. high. 

The experimental modes were obtained from a set of 99 
Frequency Response Functions (FRFs) which were acquired 
during an impact test of the beam structure.  During the test, 
the structure was impacted at the same DOF (a corner of the 
top plate), and a roving tri-axial accelerometer was used to 
measure the beam’s 3D response at 33 points. The resulting 
experimental mode shapes had 3 DOFs per point, for a total 
of 99 DOFs each. 

An FEA model of the beam structure was built using 80 
Quad Plate elements, as shown in Figure 2.  The plate ele-
ments were given the following properties. 

Thickness = 0.375 in. 
Elasticity = 1.0 E 07 lbf / (in)^2 
Poissons ratio = 0.33 
Density = 0.101 lbm / (in)^3 

The FEA model was solved for its first 20 (lowest frequen-
cy) modes. The FEA mode shapes had 3 translational and 3 
rotational DOFS at 105 Points, for a total on 640 DOFs 
each. 

FEA Versus EMA Shapes 

10 of FEA mode shapes matched with 10 of the experi-
mental mode shapes. This was verified by animated display 
of the modes shapes and by their MAC values. Only transla-
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tional DOFs of the analytical shapes at the same 33 points 
as the experimental shapes were used for the MAC calcula-
tions. Table 1 lists the analytical and experimental modal 
frequencies and MAC values between the paired shapes. 

 

Mode 
FEA 

Frequency 
(Hz) 

EMA 
Frequency 

(Hz) 
MAC 

1 149 165 0.957 
2 211 225 0.963 
3 311 348 0.948 
4 417 460 0.925 
5 451 494 0.950 
6 590 635 0.935 
7 1000 1110 0.902 
8 1100 1210 0.892 
9 1180 1322 0.848 
10 1400 1560 0.830 

Table 1. Shapes Before Model Updating. 

FEA Model Updating Results 

It is clear from Table 1 that the analytical mode shapes 
match the experimental mode shapes quite well (indicated 
by MAC values above 0.80). However, the FEA model is 
not as stiff as the real structure since each FEA frequency is 
less than its corresponding EMA frequency. 

In this model updating example, thickness values of the el-
ements on the back (vertical) plate were allowed to vary in 
an attempt to make the FEA modes more closely match the 
EMA modes. The search for the 10 Best solutions was done 
over a range (0.2 to 0.7 in.) using 50 different thickness val-
ues on either side of the original thickness (0.375 in.). 

The 10 Best thicknesses for updating the back plate are 
shown in Table 2. The 10 Best Cost function values indicate 
that all of the 10 Best solutions yield similar overall errors 
between the modal parameters. There is only a 1% increase 
in the Cost between the Solution 1 and Solution 10 of the 10 
Best solutions. 

This small change indicates that the Cost function “surface” 
is very flat in the region of the optimum solution. With a flat 
Cost function like this, it would be difficult to find the opti-
mum solution using derivatives of the Cost function (varia-
tional calculus) as part of a search method. 

 

Solution Back Plate 
Thickness (in.) 

Cost 
Function 

1 0.421 0.819 
2 0.427 0.821 
3 0.433 0.822 
4 0.440 0.823 
5 0.446 0.824 
6 0.453 0.825 
7 0.459 0.826 
8 0.466 0.827 
9 0.472 0.827 

10 0.479 0.828 

Table 2. 10 Best Solutions. 

Table 3 contains the modal properties of the beam structure 
after the back plate thickness was changed to 0.421 inches. 
There is a clear improvement in the FEA modal frequencies, 
and the MAC values indicate a negligible change in the 
mode shapes. 

 

Mode 
Updated FEA 

Frequency 
(Hz) 

EMA 
Frequency 

(Hz) 
MAC 

1 166 165 0.954 
2 213 225 0.961 
3 314 348 0.948 
4 429 460 0.925 
5 454 494 0.948 
6 593 635 0.932 
7 1010 1110 0.901 
8 1100 1210 0.891 
9 1200 1322 0.851 
10 1400 1560 0.829 

Table 3. Shapes After Model Updating 
(Back Plate Thickness = 0.421 in.) 

Example #2: UPDATING BOUNDARY CONDITIONS 

One of the most challenging problems in FEA modeling is 
constraining the model with boundary conditions that match 
real world boundary conditions. In this example, we update 
an FEA model of a cantilever beam so that its FEA modes 
more closely match its EMA modes. 
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Figure 3. Aluminum Bar Clamped to a Table Top. 

The aluminum beam shown in Figure 3 is made from 1 inch 
square aluminum bar stock, and is 25 inches long. To ap-
proximate a cantilever beam, the aluminum bar was 
clamped to a table top using a C clamp. 

It is easy to convert an FEA model of a free-free beam into a 
cantilever beam, simply by rigidly constraining one of its 
ends. However, in the real world there is no such thing as a 
rigid constraint, certainly not in this case where a C clamp 
was used to constrain one end of the beam. 

FEA Cantilever Beam Model 

First an FEA model of the cantilever beam was built using 
20 Brick elements with the following material properties for 
aluminum, 

 
Elasticity = 1.0 E 07 lbf / (in)^2 
Poissons ratio = 0.33 
Density = 0.101 lbm / (in)^3 

To model the attachment of the beam to the table, several 
springs were attached between the beam and ground (fixed 
points), in the vertical direction (Z-axis) and axial direction 
(X-axis), as shown in Figure 4b.  These springs were given 
nominal values of 100,000 lbf/in to simulate the stiffness of 
the C clamp. 

During model updating, these stiffnesses were allowed to 
vary to obtain a better match between the analytical and 
experimental modal frequencies and mode shapes. 

The first seven vertical modes of the FEA beam model are 
listed in Table 4. The frequencies of the first six EMA 
modes obtained by impact testing the cantilever beam are 
also listed in Table 4, along with the MAC values between 
the FEA and EMA shape pairs. 

Table 5 contains the model updating results. It is evident 
from the table that both the modal frequencies and shapes 
are more closely matched following model updating.  Solu-
tion 1 of the 10 Best solutions was, 

 

 
Figure 4a. Cantilever Beam Model. 

 
Figure 4b. Cantilever Beam Model Close Up. 

 

Mode 
FEA 

Frequency 
(Hz) 

EMA 
Frequency 

(Hz) 
MAC 

1 43.8 12.5 0.974 
2 292 250 0.963 
3 830 800 0.952 
4 1620 1580 0.958 
5 2600 2610 0.939 
6 3700 3800 0.699 
7 4700   

Table 4. Cantilever Beam Shapes Before Model Updating. 

S1 = 10 lbf/in 
S2 = 1E9 lbf/in 
S3 = 10 lbf/in 
S4 = 10 lbf/in 

with a Cost function value of 0.9206.  Solution 10 of the 10 
Best solutions was, 

S1 = 10 lbf/in 
S2 = 2E8 lbf/in 
S3 = 1000 lbf/in 
S4 = 10 lbf/in 
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with a Cost function value of 0.9289. 

The updated stiffnesses show that the table top and clamp 
provided plenty of stiffness in the vertical direction, but 
only a negligible amount of torsional stiffness to the beam.  
In other words, the table top itself was undergoing local 
bending to be compliant with the much stiffer beam. 

CONCLUSIONS 

A new FEA model updating method based on the SDM al-
gorithm was introduced.  Since this method allows the tar-
geting of small areas (such as joint stiffnesses) of a structure 
for updating, it has been called the SDM Targeted Model 
Updating, or STMU method. 

The speed of the SDM algorithm allows an exhaustive 
search for the 10 Best finite element property changes that 
minimize the difference between the modes of an FEA 
model and a set of experimental modes.  
 

Mode 
Updated FEA 

Frequency 
(Hz) 

EMA 
Frequency 

(Hz) 
MAC 

1 22 12.5 0.993 
2 243 250 0.943 
3 756 800 0.923 
4 1544 1580 0.948 
5 2590 2610 0.975 
6 3886 3800 0.925 

Table 5. Cantilever Beam Shapes After Model Updating. 

Not only is this search procedure fast, intuitive, and easy to 
use, but it always finds the true optimum solution together 
with alternatives from which to pick the best physically real-
izable solution. 

This model updating method was used on two common ap-
plications, updating the thicknesses of plate elements of an 
FEA model, and determining realistic boundary conditions 
(mounting stiffnesses), for a cantilever beam FEA model. 

This approach doesn’t necessarily require the entire FEA 
model but only its mode shapes and the elements to be mod-
ified. The effects of translational and rotational mass and 
stiffness changes are easily modeled using the SDM meth-
od.  In example #1, only the plate elements of the back plate 
were required for modal updating.  In example #2, spring 
and brick elements were used to generate the original FEA 
shapes, but only the spring elements were required for mod-
al updating. 

This tool shows much promise for “closing the gap” be-
tween FEA models and EMA results. Model updating not 
only provides more understanding of how structures behave 
dynamically, but it improves the accuracy of FEA models so 
that they can be reliably used for further modeling and 
simulation work.  
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