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ABSTRACT 

Operating Modal Analysis (OMA) has been applied in a num-
ber of cases recently for finding the experimental modal pa-
rameters from structures when their excitation forces cannot 
be measured. Without force measurement, a classical Experi-
mental Modal Analysis (EMA), which relies on the applica-
tion of modal parameter estimation, or curve fitting methods 
to a set of Frequency Response Function (FRF) measurements, 
cannot be performed. 

In this paper, we show that the application of a de-convolution 
window to cross power spectrum data yields the effective re-
covery of the FRFs involving each vibration response signal.  
A set of recovered FRFs can then be curve fit using classical 
FRF-based curve fitting methods to identify the experimental 
modal parameters of the structure. Use of the de-convolution 
window is illustrated in an example that uses a FRF matrix 
model to calculate structural responses to simulate a multi-
reference OMA. 

INTRODUCTION 

Experimental Modal Analysis (EMA), underwent a revolu-
tionary change during the early 1970’s with the implementa-
tion of the Fast Fourier Transform (FFT) in computer-based 
FFT analyzers [1].  Modal parameter estimation is a key step 
in FFT-based EMA.  This one step, also called curve fitting, 
has probably received more attention than any other during the 
past 30 years.  Numerous methods have been developed, and 
the technical literature contains 100’s of papers documenting 
many different approaches. 

Two completely different approaches to modal testing; one 
that relies on carefully controlled shaker excitation [3], and the 
other that strongly suggests that artificial excitation is not re-
quired at all [4], have been the topic of much discussion re-
cently.  The first approach is commonly called an EMA, and 
the second an OMA. Regardless of whether artificial excita-
tion is used or not, both approaches rely heavily on modal 
parameter estimation. Both articles [3] & [4] devote the major-
ity of their discussion to this subject. 

Modal analysis is used to characterize resonant vibration in 
machinery and structures.  A mode of vibration is defined by 
three parameters; modal frequency, modal damping, and a 
mode shape.  Modal parameter estimation, or curve fitting is 
the process of determining these parameters from experimen-
tal data. 

Furthermore, it can be shown that a set of modal parameters 
completely characterizes the dynamic properties of a struc-
ture.  This set of parameters is called a modal model. 

A modal model will be used later in this paper to perform a 
“round trip” exercise. The modal model will be used to calcu-
late the forced random response of a structure, and its accel-
eration responses will be used to simulate a multi-reference 
OMA. With application of the de-convolution window and 
FRF curve fitting to a set of response only Cross spectrum 
measurements, modal parameters will be recovered from the 
response only data, and then compared to the parameters of 
the original modal model. 

Which is Better, EMA or OMA? 

Although time, budget, and physical constraints will most cer-
tainly play a part, the modal testing method that you choose 
strongly depends on what you intend to do with the modal 
data.  The two most common reasons for performing a modal 
test are, 

1. Trouble shooting a resonance related noise or vibration 
problem. 

2. Verifying and updating a computer generated finite ele-
ment model. 

Trouble shooting a noise or vibration problem only requires 
enough data to characterize the problem so that a solution can 
be found.  Verifying and updating a finite element model usu-
ally requires much more extensive and accurate modal testing. 

Finite element analysis (FEA) is commonly used today in the 
engineering development of most new machines, structures, 
and products of all kinds. Once a finite element model is vali-
dated, it can be used for simulations, calculating stresses and 
strains, and for investigating the effects of structural modifica-
tions on a structure’s acoustic or vibration behavior.  Since 
EMA and FEA both yield a set of modes for a structure, modal 
parameters are used for comparing results, and for updating 
the FEA model to more closely match the experimental re-
sults. 

If no artificial excitation is required and excitation forces don’t 
have to be measured, simply acquiring and processing operat-
ing, (response only, or output only) data appears to be an eas-
ier way to perform a modal test. Simply acquiring the vibra-
tion response of a machine while it is operating or being ex-
cited in situ is easier than artificially exciting it and simultane-
ously measuring both the excitation forces and responses. 
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However, the assumptions required for OMA are more restric-
tive then when the excitation forces are measured. Therefore, 
controlling and measuring the excitation forces is the preferred 
way to do modal testing when possible. 

Nevertheless, when the excitation forces cannot be measured, 
then properly post-processed and curve fitting a set of 
response only measurements can still provide accurate modal 
parameter estimates. 

What Is Operating Data? 

Operating data is what the name implies.  It is data that is ac-
quired while a machine or structure is undergoing vibratory 
motion during its operation or use.  For modal parameter esti-
mation, the definition can be extended further. 

Operating Data is any vibration data that is acquired without 
simultaneously acquiring the excitation forces. 

Shape Data 

Whenever the vibration responses at two or more points and 
directions (degrees-of-freedom or DOFs) on the surface of a 
structure are measured, a vibration shape is defined.  That is, a 
shape defines the magnitude and phase of the motion of one 
DOF relative to another DOF. 

An Operating Deflection Shape (ODS) is the magnitudes and 
phases of two or more DOFs of operating data acquired 
from a machine or structure. 

Therefore, an ODS defines the relative motion between two or 
more DOFs on a structure.  An ODS can be defined for a spe-
cific frequency or for a moment in time [2]. 

Broad Band Excitation 

All excitation forces can be classified as either narrow band 
like a single frequency sine wave, or broad band, or a combi-
nation of both.  The most common broad band signals are ran-
dom, swept sine or chirp, and transient or impulsive.  Varia-
tions of these signals include burst random, burst chirp, and 
random transient [5]. 

A sine wave is classified as narrow band because its spectrum 
is very narrow, containing essentially a single non-zero fre-
quency.  All broad band signals have a non-zero frequency 
spectrum over a broad range of frequencies. 

Curve Fitting Methods 

The two most popular approaches to curve fitting either curve 
fit a parametric model of the FRF to experimental FRF data, 
or curve fit a parametric model of an Impulse Response Func-
tion (IRF) to experimental IRF data.  The Rational Fraction 
Polynomial (RFP) method is commonly used for curve fitting 
FRFs, and the Complex Exponential (CE) for curve fitting 
IRFs. 

The FRF and its corresponding IRF form a Fourier transform 
pair.  That is, an IRF is obtained by applying the Inverse FFT 
to an FRF, and the FRF can be recovered by applying the 
Forward FFT to the IRF.  Therefore, either FRFs or their 

equivalent IRFs can be curve fit by starting with either one 
and using the FFT to transform to the other. 

Many variations of the RFP and CE methods have been pro-
posed and documented [6], [7].  Both methods of these meth-
ods were used for curve fitting the operating data presented in 
this paper. Other types of curve fitting based on state-space 
models have also been used for curve fitting operating data 
[4]. 

Impulse Response Function 

Since the IRF is the Inverse Fourier transform of the FRF, 
each element of an FRF matrix has and equivalent IRF in the 
time domain.  Modal parameters are therefore estimated from 
a set of IRFs in the similar way as they are estimated from a 
set of FRFs. 

 
Figure 1. An IRF. 

BACKGROUND THEORY 

Recall that operating data is acquired in any situation where 
the excitation forces are not measured.  It is possible to curve 
fit operating data using an FRF or IRF curve fitting model, but 
an assumption regarding the spectrum of the unknown exci-
tation forces is required. 

Roving & Reference Responses 

Assume that a certain number of the responses are used a Ref-
erence responses, i.e. they are measured at fixed DOFs 
through the OMA.  The responses that are not fixed during an 
OMA are referred to as Roving responses. 

A multi-input multi-output (MIMO) FRF matrix model for the 
Roving responses can be written as follows, 

)}(F)]{(A[)}(X{ ωω=ω    (1) 

where: 

=ω)}(X{  n-vector of Roving response Fourier trans-
forms. 
 

=ω)](A[  (n by m) FRF matrix relating forces to Roving 
Responses. 

=ω)}(F{  m-vector of (unmeasured) force Fourier trans-
forms. 
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=ω  frequency variable. 

n = number of Roving responses. 

m = number of (unknown) forces. 

Similarly a MIMO model for the Reference responses can be 
written as follows, 

)}(F)]{(B[)}(Y{ ωω=ω    (2) 

where: 

=ω)}(Y{  r- vector of Reference response Fourier trans-
forms. 

=ω)](B[  (r by m) FRF matrix for Reference Responses. 

r = number of Reference responses. 
 
Equations (1) & (2) both assume that m forces are applied to 
the structure.  The number of forces m, and the DOFs where 
they are applied assumed to be unknown. 

Multi-Reference Cross Power Spectrum Matrix 

A power spectrum matrix can now be formed between the 
Roving and Reference response Fourier transform vectors. 
This multi-reference Cross Power spectrum matrix is written 
as, 

T
f,fy,x )](B[)](G)][(A[)](G[ ωωω=ω  (3) 

where: 
T

y,x )}(Y)}{(X{)](G[ ωω=ω = (n by r) Cross Power 
spectrum matrix.  

T
f,f )}(F)}{(F{)](G[ ωω=ω = (m by m) force Power 

spectrum matrix. 

T – denotes the transposed complex conjugate. 
 

The force Power spectrum matrix is symmetric and real val-
ued.  The Roving & Reference FRF matrices are also assumed 
to be symmetric. 

Each element of the Cross Power spectrum matrix (3) is the 
Cross Power spectrum between a pair of Roving & Reference 
responses.  Each column of the Cross Power spectrum matrix 
can be used for OMA after the De-Convolution window is 
applied to it. 

Measurement of elements of the Cross Power spectrum matrix 
(3) is a straightforward calculation in all current day Fourier 
analysis systems. A Cross spectrum calculation has the follow-
ing important advantages, 

• Extraneous noise is removed by spectrum averaging. 
• Non-linear responses due to random excitation are re-

moved by spectrum averaging. 
• Triggering is not required. 

To see more clearly how an FRF curve fitting model can be 
applied to a column of Cross Power spectrum data, and hence 
OMA can be performed, consider the case of one Reference. 

Cross Power Spectrum of One Reference 

Using equation (3), the column of Cross Power spectra corre-
sponding to Reference DOF k is written, 
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where: 

=)(, ωijC element (j,i) of the force Power Spectrum ma-

trix, )](G[ f,f ω . 

* - denotes the complex conjugate. 

Equation (4) shows that each component of the kth column of 
the Cross Power spectrum matrix is a summation of terms, 
each term taking the form, 

(Roving FRF) x (force spectrum element) x (Reference FRF)* 

Flat Force Spectrum Assumption 
If the force Spectrum matrix is assumed to be “relatively flat” 
in the frequency range of the resonances of interest, and the 
excitation forces are stationary, then the Force power spec-
trum can be replaced with constants for the frequency range(s) 
of interest. 

There are practical cases when the excitation forces can be 
assumed to have a relatively flat spectrum.  For instance, vehi-
cle traffic on a bridge or wind blowing against a building are 
assumed to be broad-band and random in nature.  If the excita-
tion forces are impulsive in nature, they too can be assumed to 
have a relatively flat spectrum. 

With the above assumptions, equation (4) can be re-written as 
a single summation of terms, 
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where: 

=iD constant due to the forces applied at the ith DOF. 

The De-Convolution Window 

Equation (5) makes it clear that each component of a column 
of a multi-reference  Cross Power spectrum matrix is a sum-
mation of terms involving the a Roving response FRF multi-
plied by the complex conjugate of a Reference response 
FRF. The inverse Fourier transform of a Cross spectrum is a 
Cross correlation function.  Since multiplication in one do-
main is equivalent to convolution in the other domain, the 
inverse Fourier transform of equation (5) is a column of Cross 
correlations, each column being a summation of Roving re-
sponse IRFs convolved with a Reference IRF. Figure (2) 
shows an example Cross correlation function. 

 
Figure 2. A Cross Correlation Function. 

The unique property of these Cross correlations is that the 
Roving IRF dominates the first half of the signal while the 
Reference IRF (corresponding to the complex conjugate of the 
Reference FRF), dominates the second half of the signal. 

To identify the modes of the structure, only the Roving IRF is 
needed. Hence applying a De-Convolution window to the sig-
nal in Figure 2 preserves the Roving IRF is while the majority 
of the Reference IRF is removed, as shown in Figure 3.  No-
tice that even though the signal is non-zero in the middle of 
the window, the De-convolution smoothly transitions it to 
zero. 

 
Figure 3. Cross Correlation After De-Convolution Windowing. 

When the windowed data in Figure 3 is transformed back to 
the frequency domain, an FRF curve fitting method can be 
applied to the Roving FRF to identify its modal parameters. 

Illustrative Example 

To demonstrate the use of the De-Convolution window, we 
will start with a modal model of a structure and use equations 
(1) and (2) to synthesize its responses to a broad band random 
excitation force.  Then a set of Cross Power spectra calculated 
between multiple Roving and Reference acceleration response 
will be post-processed using the De-Convolution window and 
FRF curve fitting.  Finally, the resulting modal parameters will 
be compared with the parameters of the original modal model 
to provide a round trip validation of this approach to OMA. 

 
Figure 4. Beam Structure. 

The modal model is a set of 10 mode shapes extracted from a 
set of 99 FRF measurements taken in three directions at 33 
points of the structure shown in Figure 4. 

An FRF matrix model was synthesized using the modal model 
of the beam, and the FRF model was “excited” with a burst 
random signal at the left front corner of the upper plate, at 
DOF 5Z.  Several typical structural responses to the bust ran-
dom excitation are shown in Figure 5. 

Burst Random Excitation for Leakage Free Responses 

Of course, burst random excitation of a real structure could 
never occur unless the structure was artificially excited with 
shakers driven by burst random signals.  In most practical 
cases where operating data is acquired, the responses would be 
purely random, and therefore a Hanning window would be 
applied to the response signals in order to reduce leakage in 
the Cross spectrum measurements.  By using burst random 
excitation, our MIMO simulation provided acceleration re-
sponses that would yield leakage-free Cross Power spectrum 
estimates, thus eliminating leakage as a source of error in this 
round trip experiment. 
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Figure 5. Several Acceleration Responses. 

As a first simulated OMA, the acceleration response at the 
right front corner of the upper plate was used as a reference 
response, and Cross Power spectra were calculated between all 
99 DOFs and the reference DOF 15Z. 

Some typical Cross spectra are shown in Figure 6A before the 
De-convolution window was applied. These measurements are 
the results of 50 spectrum averages, with 1024 lines of resolu-
tion. 

 
Figure 6A. Cross Spectra before De-Convolution Windowing. 

The same Cross spectra are shown in Figure 6B after the De-
convolution window was applied. Notice that the magnitudes 
of the Cross spectra have less noise on them due to the effect 
of the De-Convolution window. Notice also that the phases 
now have the negative changing phase as frequency increases 
through a resonance peak. 

The windowed Cross spectra where curve fit using an FRF 
curve fitter, and the results are shown in Table 1. 

 

 
Figure 6B. Cross Spectra after De-Convolution Windowing. 

 

 Frequency (Hz) Damping (Hz) MAC (%) 

Mode Modal 
Model 

Curve 
Fit 

Modal 
Model 

Curve Fit Reference
15Z 

1 164.6 164.8 3.07 3.23 100 

2 224.1 224.9 6.61 5.70 99.3 

3 347.4 346.2 5.22 4.86 100 

4 460.7 460.1 10.91 10.14 16.9 

5 492.8 491.9 4.61 5.12 100 

6 634.3 630.1 14.19 8.57 97.5 

7 1108.1 1108.8 5.07 4.78 100 

8 1210.1 1209.5 7.21 6.83 99.9 

9 1322.3 1322.1 7.12 7.10 99.7 

10 1553.9 1554.7 19.57 18.03 99.3 

Table 1.  Operating Modes from Reference 15Z. 

Table 1 indicates that all of the modal frequencies and damp-
ing were recovered with reasonable accuracy from the Cross 
spectra, but it’s clear from its low Modal Assurance Criterion 
(MAC) value that the 460 Hz mode shape was not recovered. 
It can only be assumed that the 460 Hz mode was not well 
defined in set of Cross Power spectra using Reference DOF 
15Z, which “implicitly multiplied together” the Roving and 
Reference FRFs between the excitation DOF 5Z and the refer-
ence DOF 15Z. 

Multiple Reference OMA 

Since the Reference DOF 15Z was not enough to correctly 
identify all of the modes in the modal model, a second simu-
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lated OMA was performed using two Reference responses (3Z 
& 15Z).  Table 2 below shows the results of the multiple ref-
erence OMA.  The results clearly indicate that the extra refer-
ence not only provided better estimates of modal frequency 
and damping, but more accurate mode shape estimates from 
both references as well. 

 Frequency (Hz) Damping (Hz) MAC 
(%) 

MAC 
(%) 

Mode Modal 
Model 

Curve 
Fit 

Modal 
Model 

Curve 
Fit 

Ref. 
3Z 

Ref. 
15Z 

1 164.6 164.4 3.07 3.01 99.9 100 

2 224.1 224.1 6.61 5.84 99.8 99.3 

3 347.4 347.3 5.22 5.43 100 100 

4 460.7 461.8 10.91 9.94 98.8 95.8 

5 492.8 492.6 4.61 4.16 100 100 

6 634.3 635.5 14.19 11.01 99.7 99.3 

7 1108.1 1108.3 5.07 4.73 100 100 

8 1210.1 1209.1 7.21 7.06 100 100 

9 1322.3 1321.9 7.12 6.60 99.9 99.9 

10 1553.9 1551.9 19.57 17.98 99.3 99.6 

Table 2.  Operating Modes from References 3Z & 15Z. 
 
A typical curve fitting result is shown in Figure 7, where the 
red line is the fit function plotted on top of the Cross spectrum 
data. These results indicate that an FRF curve fitter can be 
applied quite successfully to operating data after a De-
Convolution window has been applied to it. 

CONCLUSIONS 
It was demonstrated the OMA can be performed quite accu-
rately using response only (or output only) accelerometer data 
from a structure, it the excitation forces have a relatively flat 
spectrum over the frequency range of interest, and the data is 
processed with a De-Convolution window.  It was shown in 
the background theory section that the De-Convolution win-
dow removes the majority of the Impulse Response Function 
(IRF) of the Reference response from the Cross correlation 
function, leaving the IRF of the Roving response.  Transform-
ing the Roving IRF to the frequency domain yields an FRF 
which can be processed using FRF curve fitting methods to 
extract modal parameters. 

Another advantage of this approach is that after applying the 
De-Convolution window, more zero valued samples can be 
added to the IRFs to increase their time length.  Then, when 
the IRFs are transformed into FRFs, the frequency resolution 

of the FRFs in increased, thus providing more samples of data 
surrounding each resonance peak, which improves the curve 
fitting results. 

This combination of De-Convolution windowing and in-
creased frequency resolution is a powerful combination of 
techniques for performing an OMA. 

 
Figure 7. Typical Cross Spectrum Curve Fitting Result. 

References 
[1] Schwarz, B. & Richardson, M., Modal Parameter Estima-
tion from Operating Data, (Vibrant Tech. Paper No. 42 
www.vibetech.com) 

[2] Richardson, M., Is It A Mode Shape Or An Operating De-
flection Shape?, Sound and Vibration Magazine, February 
1997. 

[3] Pickrel, C. R., Airplane Ground Vibration Testing – 
Nominal Modal Model Correlation, Sound and Vibration 
Magazine, November, 2002. 

[4] Batel, M. Operational Modal Analysis – Another Way of 
Doing Modal Testing, Sound and Vibration Magazine, August 
2002. 



Presented at I0MAC 2007 April 30 - May 2, 2007 

Page 7 of 7 

[5] Richardson, M., Structural Dynamics Measurements, 
Structural Dynamics @ 2000: Current Status and Future Di-
rections, Research Studies Press, Ltd. Baldock, Hertfordshire, 
England December, 2000, p-341. 

[6] Formenti, D. & Richardson, M. Parameter Estimation 
From Frequency Response Measurements Using Rational 
Fraction Polynomials (Twenty Years Of Progress), Proceed-
ings of International Modal Analysis Conference XX, Febru-
ary 4-7, 2002 Los Angeles, CA. 

[7] Brown, D. & Allemang, R. Multiple Input Experimental 
Modal Analysis, Fall Technical Meeting, Society of Experi-
mental Stress Analysis, Salt lake City, UT, November, 1983. 

[8] Vold, H., Kundrat, J., Rocklin, G. A Multi-Input Modal 
Estimation Algorithm for Mini-Computers, S.A.E. paper No. 
820194, 1982. 

[9] Ibrahim, S., Mikulcik, E. A Method for the Direct Identifi-
cation of Vibration Parameters from the Free Response, Shock 
and Vibration Bulletin, Vol 47, Part 4, 1977. 

[10] Improvements in the Complex Exponential Computa-
tional Algorithm, Office of Naval Research, Washington, DC., 
prepared by Texas Instruments, Dallas, TX., March, 1970. 


