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The conventional theory of coherence is essentially a scalar theory in the sense that coherence values are
generally expressed as scalars obtained from the elements of various auto- and cross-spectral matrices.
Furthermore, the theory is generally described for the single-output case, and for the case where only one
undesired interfering input is assumed. In this paper, we present a general matrix formulation of coherence
for the multiple-input and output case, including an arbitrary number of interfering inputs. We show that

for n inputs, there are 2" —1 different output coherence matrices.

PACS numbers: 43.60.Cg

INTRODUCTION

In linear systems having multiple inputs and multiple
outputs, there are often various interrelationships
among the inputs, as well as several signal paths be-
tween each input and each output. In addition, there
are usually unrelated sources of noise or interference
that contaminate the inputs and outputs.

Let’s illustrate the essence of the problem with a
practical example. Suppose that we want to study the
noise environment in the interior of an automobile.

We decide to monitor the noise using two microphones,
one located in the front-seat area and one in the rear-
seat area, We are particularly interested in the noise-
reduction properties of the suspension system, so we
instrument the vehicle with accelerometers on the
wheel axles. However, there are noises from the en-
gine that tend to contaminate our measurements, so we
also add transducers to monitor these sources in the
engine compartment., Finally, there are wind noises
due to turbulent airflow that we cannot easily measure,
but nevertheless are very noticeable.

We actually want to know the contribution at each
microphone from each wheel source, with all engine
and wind noises removed. Now, the wind noises are
completely unrelated (incoherent) to both the road and
engine noises, so this contribution can readily be elim-
inated from the estimate of the transfer characteristics
of the suspension system by averaging techniques.
However, the engine noises will travel through the ve-
hicle frame to each wheel axle, and will be measured
by those wheel transducers, as though these contribu-
tions actually came from the road, so we want to re-
move these interfering engine noises from each wheel
transducer. Then we can follow the “residual” wheel-
transducer signals through the suspension system and
to the monitoring system.

The concept of a “residual” input obtained by remov-
ing unwanted signals is very useful, and leads directly
to the partial coherence concept. We do this removal
using a least-squared error technique, as will be de-
scribed later.

The interrelations among the various inputs are com-
pletely described by an input-power matrix P, and the
transfer characteristics between the inputs and out-
puts are described by the transfer matrix H, Although
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these two matrices determine the output power HPH™
that originates from the defined inputs, there are gen-
erally other output contributions from various noise
sources. These noise components are described by the
noise power matrix N, giving a total output-power ma-
trix R. The coherence matrix I" times R gives that
portion of R that originates from the inputs described
by P. The unit identity matrix / minus I', multiplied
by R gives the noise matrix N, The coherence matri-
ces are either multiple or partial, depending upon
whether all inputs are considered to be of interest, or
whether some of the inputs are considered to be con-
taminating, and are thus removed from the remaining
inputs,

The ordinary scalar coherence function (for one in-
put and one output) gives the proportion of the total out-
put power (at a particular output) that seems to origi-
nate from a particular input. This is simply the ratio
of the diagonal elements of the coherent output power
[given by HPHT; see Eq. (22)] and the total output power
R. However, for the multiple-input case, there are
relationships among the various inputs, as well as
many paths from each input to a particular output, so
the ordinary coherence becomes difficult to interpret.
The situation is further complicated when we have mul-
tiple outputs, and we include the possibility that the
various interfering noise sources at each output may be
related. A matrix formulation of coherence becomes
essential in this situation,

I. LINEAR DEPENDENCE BETWEEN TWO VECTORS

We can best lay the theoretical groundwork by de-
scribing the way that two arbitrary vectors can be lin-
early related. Suppose that we have any two vectors,

U and V (not necessarily the same number of elements),
and we would like to know how much of V is linearly
related to U, and how much is incoherent noise, which
we will denote by W. We postulate that

V=TU+W, 1)

where T is some transformation matrix that describes
the relationship between U and V. We define W to be in-
coherent with U, so

E[wUT}=0, (2)

where E denotes the expected value of the product (ob-
tained by averaging aninfinite number of estimates to-
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gether), and the T superscript denotes a conjugate
transpose operation, These vectors and matrices will

generally be complex functions of the Laplace variable s.

Let’s postmultiply Eq. (1) by U7, to obtain
E[VUT]= TE_UUT]+ E[WUT|= TE[UUT] . (3)
From this relation, we can solve for T, giving
T=E[VUT]E[UUT]? | (4)
provided the inverse of E[UUT] exists. A necessary
and sufficient condition for this inverse to exist is that
none of the elements of U be completely coherent with

one another. This will insure that all columns (or
rows) of E[UUT] are linearly independent,

It is easy to show that Eq. (2) insures that TU is the
best estimate of V in a least-squares sense, but we will
not digress to derive this relationship. We call W=V
— TU the 7residual vector,

Analogous to the “power” matrix E[UU7], we can also
define the “power” associated with the V vector as

E[VVT]=E[(TU + W)(TU + W)7]
= TE[UUT|TT + E[WWT] , (5)

We see that the power associated with V comprises the
part

TE[UUT)TT = E[(TU)(TU)T]

that is associated with the part of V coherent with U,
and the part E[WWT] associated with the incoherent
residual vector W,

We define a coherence matrix I' as follows:
TE[vVvT|= TE[UUT]|TT

=E[VUT]|E[UUT]* E[VUT]", (6)
so, from Eq. (5) we get
(I-T)E[VVT]=E[WWT], (7
giving

r=I-E[wwT] F[VVT]"
=E[VUT|E[UUT] E[VvUT|T E[VVT]! . (8)

Note that I' times the total power gives the part coher-
ent with U, and I-T times the total power gives the
incoherent part. For future reference, we can rewrite
Eq. (7) as

EwwT)=(I-T)E[VvVT]
=E[vvT]-g[vUT]E[UUT]* E[VUT]" . (9)
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Y =HX+2
FIG. 1. Multiple input-output model.

There is an interesting alternate way of obtaining this
residual-power matrix as follows: Let’s define a com-
posite vector [%], and write the power matrix p for this

new vector. We obtain
B (AT AR VA S

Now, 1f we invert this matrix, we obtain
a_ [ b
p-= [, .. E| WWr]-l] , (11)

where we have ignored all terms except those that oc-
cupy the same position that E[ VV”] occupied in the
original p matrix. Using these submatrices, we can
calculate T in the form given by Eq. (8):

r=1-E[WwWwTE[VVT| =1 (E[VVT]E[WwWT])! .
(12)

We next apply this general theory of linear depen-
dence between two vectors to the multiple input—output
system, defining the residual input vector, and the con-
cepts of input coherence, partial coherence, and mul-
tiple coherence.

1l. THE MULTIPLE INPUT-OUTPUT SYSTEM

Figure 1 illustrates the linear system model that we
plan to discuss, where we have subdivided the input
vector X into two parts, X,and X,. We call the X ele-
ments “desired” inputs, and the X, elements “interfer-
ing” inputs, We emphasize that X; may be zero, The
system transfer matrix is H, and the contaminating
noise vector is Z, where we define Z to be incoherent
with X, expressed by

E[ZX"]=0. (13)

This system model is obtained by first writing the
various simultaneous time-domain equations describing
the physical system, and then taking the Laplace trans-
form. Thus, all of these vector and matrix elements
are functions of the Laplace variable s. When we ac-
tually estimate these quantities, we use the Fourier
transform in which s is replaced by i2nf (f is frequency
in hertz).

For the moment, let’s ignore the partitioning of the
input X vector, so the output Y is simply

Y=HX+2Z . (14)
Postmultiply by X7 and take expected values, to get
E[YX"]=HE[XX")+E[ZX"|=HE[XXT] . (15)

To shorten the notation, we define P, Q, R, and N ma-
trices as follows:

|
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P=E[XXT] input-power matrix (16) hence (?) different residual input vectors X. If we sum
- T . these binomial coefficients over v, from Oton-1, we
Q=E[YXT], cross-power matrix an obtain 2" — 1 different possibilities. One of these pos-
R=E[YYT], output-power matrix (18) sibilities is for v =0, implying no interfering inputs,
y o . and in this case X=X,=X, We must exclude the case
N=E[ZZT], noise-power matrix (19) ’

In these terms, we can rewrite Eq. (15) as

Q=HP (20)
from which we obtain

H=QP! (21)

for the transfer matrix, None of the inputs can be com-

pletely coherent, or else P will be singular. Forming
the output-power matrix R = E[YYT] gives
R=HPHT +N . (22)

It is apparent that HPHT is the part of R that is coherent
with the input X, and N is the incoherent noise contribu-
tion.

We define the mulliple coherence matrix I',, by the
expression

I, R=HPHT=R-N , (23)
SO

(I-T,)R=N (24)
and

Tn=1- NR1'=HPHTR™ , (25)

In actual practice, we are seldom particulary inter-
ested in the elements of I',,, but rather are more con-
cerned with the two parts of R, corresponding to the
coherent part I',R, and the incoherent part N=(/ -T,)R.
We emphasize this point of view by writing

R=T,R+(I-T,)R=T,R+N . (26)

Now, we turn our attention to the input problem in
which X is partitioned into the desired part X,, and the
interfering part X,. Our strategy is to remove the in-
terfering X, components from the desired X, compo-
nents in a least-squared manner,_ to obtain a residual
input vector, which we will call X. Referring to the
previous section describing the linear dependence be-
tween two vectors, we can identify X, with U, X, with
V, and X with W. We can immediately write the least-
squares transformation matrix 7 [from Eq. (4)] as

T=E[{X XT] E{ X, XT|"? (27
so, the vesidual input vector X becomes [from Eq. (1))
X=X,-TX, . (28)

Let’s reemphasize that X is the remnant of the desired
input vector X,, after the least-squares removal of the
interfering input vector X;. It should be apparent that
ere are numerous possible X vectors, depending upon
the partitioning of X, For example, if there are n ele-
ments in X, v of which are in X, and n - v of which are
in X, then there are n!/v!(n-v)! =(}) different possi-
ble combinations of desired and interfering inputs, and
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for v=n, because this implies that all inputs are inter-
ference,

Continuing our study of the residual inputs, we can
define an input coherence matrix analogous to Eq. (6)
by the expression

T; E[X, X% )= TE[X,XT] TT

= E[X XT)E[X,XT " E[ X X{|" (29)

Again, to simplify the notation, we will define

P,=E[X,XJ], desired input power (30)

P,=E[X,X]], interfering input power (31)

P-E[XXT], residual input power (32)

Q=E[X,XT], residual cross power. (33)
From Eq. (7), we can write (29) as

[P,=TP,TT=QP;!QT=P-P (34)
or

(I-T)Py=P=P,-QP{'Q", (35)
giving

r;=1-PP=QP;*QTP;!. (36)

Also, Eq. (27) for T becomes
T=QP{ . (37

_ We see from Eq. (35), that the residual input power
P is obtained from the desired input power P, by sub-
tracting the greatest possible contribution caused by the
interfering inputs, I';P,. The P, matrix can be sepa-
arated into two parts as

Py=TPy+(I-T)Py=TPy+ P, (38)

where I';P, is the interfering input power and (I - )P,
is the residual input power.

This concept of input coherence does not seem to ap-
pear in the current literature, but it is a useful way to
visualize the residual input approach. As with multiple
coherence, the elements of I'; are not as important as
the product T';P,, or the residual power matrix P.

We conclude our discussion by defining a partial-co-
herence matrix (for each X). Figure 2 shows the same
linear system as Fig. 1, except the input vector is the
residual X, instead of the complete X vector. Thus,

the residual part of the output R is obtained in place
of R.

111. SYSTEM MODEL WITH RESIDUAL INPUT
The residual output vector Y is given by
P-ix.z, (39)
where H comprises those columns of H corresponding

to the elements of X (or X,). The output residual power
R is

S e B 3 T o A P I R PR O
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x
x

R=E[YYT]=HPHT +N . (40

The partial-zoherence matrix for this particular X in-
put vector is defined by the expression

T,R=HPA =R -N, (41)
SO

(I-T,)R=N (42)
and

r,=I-NR™=HPHTR . (43)

Thus, we can write the two parts of the residual output
power 3s

R=T,R+(I-T)R=T,R+N (44)

where F,,I.Z is the coherent part with residual input X
and (/- T,)R is the incoherent part.

Finally, we can include the output contribution from
the interfering inputs to obtain a total output vector

Y=HX+(HX-HX)+Z (45)
and a corresponding total output-power matrix
R=(R-N)+(R-R)+N,

where (R - N) is coherent with X (and part of X;), but
incoherent with X,; (R - R) is incoherent with X, but co-
herent with X; (and part of X;); and N is incoherent with
all inputs,

Before we summarize these results, we will work out
an example involving three related inputs, and a pair
of outputs, using two different partitions of the input
vector,

IV. EXAMPLE

In the Introduction, we gave an example where two
microphones might be used to determine the effects of
an automobile suspension system in reducing the trans-
mission of road noises into the passenger compartment.
We will calculate some of the coherence matrices for
this example, using some assumed input relations, and
some arbitrary transfer matrix elements.

The three input-transducer signals are X,, X, and
X,, related to three mutually incoherent sources &,, £,,
&, which might represent road noises from two wheels,
and engine noise, etc, The signals from a pair of mon-
itoring microphones in the passenger compartment are
represented by Y, and Y,, while the contributions from
wind noise are denoted by Z, and Z,, respectively. The
transfer matrix H includes the suspension system, as
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Y=H ; +2
FIG. 2. System model with residual input

well as the various paths through the frame to the pas-
senger area. (See Fig. 3.) The input vector is

[x

X= Xb ’
Xe

and the noise vector is

2,
+2)

giving an output vector
Y= 'Yx] ,
LYB
Let’s assume that the inputs are related in the following
way:

Xa=g1+£2+53, 51
Xb=£z+£3, E= Eg
XC=£3v gg

where the £’s are mutually incoherent sources. We will
choose

1 0O
E[ttT]=|0 2 O,
0 0 3
along with
P9
and

1 0
N= .
[0 4]
These are completely arbitrary numbers, chosen simply

to illustrate the previous theory. First, let’s calculate
the input-power matrix P:

Zy
X.hh + V.l
X, ———> H
X, —>] > ; F—>v,
L

FIG. 3. 3-input, 2-output system.
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6 5 3
P=E[XXT|=|5 5 3
3 3 3

Since the total output-power matrix is R=HPHT +N,
we have

195 55-1i33
T— Al
HPH ‘[55+i33 29 ]
giving,
R»[ 196 55133
155 +133 33

We can invert both the input- and output-power matri-
ces, giving

1 -1 o0
Pl -1 3 -%
0o -z 4
and
_1=L[ 33 —55+i33]
2354 |-55-133 196

The coherent output power I',R is given by

I‘R:R—N—HPH’-[ 195 55-;’33]

55 +133 29
S0, we can write the multiple-coherence matrix as
* u L[ 2321 55 -i33]
™ 2354220+§132 1570

Note that the elements of I',, are difficult to interpret,
whereas the elements of I',,R have a direct physical
meaning,

For case I, let's assume that £, is the desired input
signal, and §, and £, are interfering inputs. We have
managed to locate transducers to monitor £, and £ via
X, and X,, so we can remove these signals from X,.
Thus, we define X ,=X, and X, =[5’]. Using Eqgs. (30)-
(33), we find that

s nef3 Y (4 7]
Q=[5 3],

so
T=QPj'=[1 o]

The residual-input vector thus becomes
X=Xo- TX;=X, - X, =4, .

We expect this result, because T has been chosen to
eliminate all possible contributions from X, and X, to
X,. Obviously, the residual input power is

P=E[£E]]=1.

The input coherence is [from Eq. (36)]
r,=I-PPj=§,

while
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T;Py=5, and (I-T;)Py=1.

Thus, out of a total input power of six units at input X,
five of these units are interfering signals, and only one
unit is associated with the residual input.

To determine the partial coherence, we need the H
and R matrices. H simply comprises the first column
of H, corresponding to X;=X,, so

i-[3)

and
- ~ 25 0
i [0,
[ %
giving
26 0
- T, N=
R=HPH"+N [0 4]
and
= ==~ 25 0
- T_ .
I''R=HPH _[0 0],

we can write I, as

e[ 5.

Finally, from Eq. (46), we can write R in the form

r-|[ 196 55— :'33] total output
" 55+133 33 wer

5 0] (coherent with X
“L o of lincoherent with X,

55+133 29 coherent with X,

1 0
*[0 4]{noise.

For case II, we will assume that X, is the only inter-
fering input, so we will remove it from the other two
inputs, Thus, we have

Xﬂ
X°=[x,,] v =X

X [ 170 55 -i33] {i.ncoherent with X

We obtain
6 5 .
Po:[ﬁ 5]’P1=3,P11=%,

]

The residual input vector for this case is

o[58 [

Note that the influence of X, = £, has been removed from
X. The residual input power is

SHH

and
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5 3 3
F,P[,:PO—P:[S 3],

50, we get the input coherence matrix

03

ri=
o4
Now,
- - 93 10-1i6 -
T _ —
HPH ‘[10+i6 2 ]‘F’R’
SO
R 94 10-16
iy %3
HPH™+N=|10.i6 6 |°
from which we can write
r _L[ 422 1o-is]
» 7428140+ 124 52 |°

We are now in a position to separate the output power
into the following three parts:

_[ 196 55-1‘33]
“155+133 33

_ [ 93 10 -isjl coherent with X
10+i86 2 incoherent with X,

. 102 45 -2 incoherent with X
454127 27 coherent with X,

1 0 .
+ [0 4] {noxse .

Note that the most useful aspect of this theory is the
separation of the output-power matrix into parts, in ac-
cordance with the partitioning of the input into “desired”
and “interfering” groups. The actual element values

in the various coherence matrices are difficult to inter-
pret, so it is best to regard coherence matrices as op-
erators on the output power, resulting in the decompo-
sition of this power into several constituents.

V. SUMMARY AND CONCLUSIONS

The coherence concept!’? is introduced to describe
the division of power at the output of a multiple input-
output linear system. Part of this power is directly
related (coherent) to the input signal, and the remainder
is due to contaminating noise sources. We emphasize
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the interpretation of each coherence matrix as an oper-
ator on the output power, to effect this division between
coherent and incoherent contributions.

We discuss the concept of a residual input vector, in
which a set of undesired or interfering inputs are re-
moved in a least-squared sense from the remaining de-
sired inputs. In conjunction with this idea, we define an
input coherence matrix that characterizes the amount
of input power that actually originates with these inter-
fering inputs.

The concept of partial coherence is defined, which
characterizes the portion of the output power that actual-
ly results from this residual input, in comparison to the
incoherent noise power. We show that there are 2" -1
different output coherence matrices associated with an
n-input linear system., One of these matrices is the
multiple coherence matrix (no interfering inputs), while
the remaining 2" — 2 matrices are partial-coherence
matrices. There are a similar number of input coher-
ence matrices.

There is considerable redundancy in these various
matrix representations, since only (7 +m)? real num-
bers are actually needed to completely describe a lin-
ear system with » inputs and 7 outputs (at any one fre-
quency). Nevertheless, these matrices may be used to
present certain information in a form that is relatively
easy to interpret from a physical point of view, This
is particularly true when interfering-signal contami-
nation must be eliminated,

We close with a numerical example involving a three-
input, two-output system, in which the inputs are re-
lated. Two cases are illustrated, depending on whether
one or two inputs are considered to be interfering.

We have replaced the conventional scalar theory of
coherence with a more general matrix approach., We
also include the possibility of multiple-interfering sig-
nals,
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