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The key to reliable medal parameter estimates is the
accurate measurement of the transfer function of a
system. In this section, we will develop techniques for
estimating transfer and coherence functions of a single
input, single output linear system, and we will briefly
discuss some of the errors to be expected from these
procedures. We will model this linear system as shown
below.
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Figure 1. Elementary Linear System Model

The transfer function is H(f), relating the output
Y(f) to the input X(f). In addition, we assume some

source of contaminating noise N(f), so we can write the
system equation as:

Y(f) = H(f) X(f) + N(f) (1

This is a frequency domain representation of the
system, although we could just as well use a time domain
formulation, or a Laplace s-plane representation. For
brevity, we will generally drop the f notation, but this
functional dependence is always implied.

In general, we measure X and Y. and would like to
obtain an estimate of H from these measurements. In a
noise-free environment we could simply divide Y by X to
obtain H. However, we usually have substantial amounts
of noise, so we must develop another technique.

One of the standard techniques for estimating
parameters of noisy signals is the use of a least-squares
technique developed by Gauss in 1795 in an effort to
improve the orbit determination of minor planets. The
procedure is easy to develop, as we show next.

Let's assume that we make n measurements of both X
and Y at each frequency within some band of interest. We

want to calculate the value of H at each frequency to

minimize the sum of the squared errors between Y and

HX, where H is an estimate of H. We write this
squared error as:

n

)

k=1

A 2
Y- HX’ @)

We use the absolute magnitude, since these variables
are generally quantities. If we write:

e=) (Y-HX) (Y*-H*X*) 3)

k=1

we can differentiate € with respect to H* (or H), and

set the resulting derivative to zero. Here, we use the *

symbol to denote the conjugate of a complex number.
Thus, we have

ot < A
o —kz_‘;(Y—HX)X* =0 4)

Solving for ﬁ gives,

A= k=l (5)

If we imagine m—oo, we define the cross-power
spectrum ny and the input auto-power spectrum G

by,

G, = Y VX~ (6)
k=1
G, = XX+ ™

Then H = H and we have,
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H = Gy‘ (8)

XX

In actual practice, n is finite, so we define estimates of the
cross and auto-spectrum as:

G, =Y YXx ©
' k=1

G, =D XX* (10)
k=1

Hence, our least-squares estimate of H is,

-
H = (.; (1D

Fromeq. (1), wehave Y = HX + N, so

éyx=§ HXX * + kZ:NX‘ =H G_+G,,

(12)

where, G is the noise-input cross-spectrum estimate.
~ n

nx = NX (13)
k=1

Substituting into (11) gives

A-H=Om (14)

~

G
We see that the error in our estimate of H is ——. The

XX
noise is unrelated to the input, this approaches zero as
n — oo . We will discuss this error in more detail later.

Let's substitute this expression for H back into eq. (3), to

obtain the squared error for this choice of H. We have,

e =Y (YY* ~HXY* ~H*X*Y + HA*)
k=1
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= G, ~AGx, -A+G, + i G,

Yy

(15)
A A ~ ~ ~ z A
From (11) we have, HG*, = H'G,, = H| G,
s0
A 2
a A2 A A ny
e=G, -A G, =6, - (16)
' G

where, ny is the estimate of the output auto-power

spectrum given by
= n
G,, = kz; YY *

=z": (HAX + N) (H*X*+ N*)

k=1
A2 A A A A oA A
=H| G, +HG* + H*G,  + G,
A 2 ~ A A A A
=H| G, +G,, +(HG* +H*G,))
a7
where, G is the estimate of the noise auto-power
spectrum.
A n
G, = NN * (19)
k=1

~

Again, we notice that G, —> 0 as X and N become
incoherent, so

G,=HG,+ G, (20)

We see that the output power comprises two parts:
2
H[ G

strictly to the noise. We define the part of G yy that is

is directly related to the input, and G is due

XX

coherent with the input as
o' G, = MG, e

So the incoherent part of G | is
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a-h G, = G, 22)
But, notice from eq. (16) that
e =(1-f) G, =G, 23)

Thus, the least squares estimate of H produces a squared
error equal to the system noise power. Since we assume
that this noise is unrelated to the input, there is no way of
altering H to reduce this squared error any further.

2

The quantity M is called the (scalar) coherence
function, and describes the division of the output power
(G,,) into coherent and incoherent parts (with respect

to the input).

2
, but

can only obtain an estimate. Analogous to eq. (21), we
define this estimate by

Since G, #0, we cannot actually measure |'Y

N

: G, ,so (24)

il G,, = A

LA

ff = A=
=&

XX yy

(25)

. 2 .
The errors in these estimates of H and |y| are discussed

in references [1] & [2]. For a nonrandom input signal, the
probability density of H is Gaussian, with zero mean, and
variance given by

L
"o .

where 0':, is the variance of the real part of H as well as

the imaginary part of H. For a Gaussian random input,
uncorreleated with the noise, the probability density of H
is a Student's t-distribution with zero mean and variance.

2 |H|z 1- |Y|2

"~ 2(n-1) W

27)

Thus, we see that the coherence function can be used to
estimate the variance on the estimate of H. Note that
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1-p
[

power ratio We should emphasize, however that low
coherence values do not necessarily imply poor estimates
of H. but simply mean that more averaging is needed for a
reliable result.

is a measure of the output noise power to signal

Reference [2] gives a good discussion of the properties

A2 . . . . :
of |y| . This is a biased estimator, with maximum bias of

1 A2 : . . .
— for M = 0. The maximum variance is approximately
n

1
—— at |y|2 = 5 . Approximate formulas are,
. 1 2.9
Bias ~ — (1—|v| ) (28)
n

1
T for, Mz=0

Variance = < (29)

2
= a=pfy, o<pf <1
~ ZMZ (bias)

The contributions of bias and variance to the error in

A2 A2 )
M are nearly equal for M very small, but the variance

is much more dominant, than the bias for most values of

i

General Measurement Considerations

There are several factors that contribute to the quality
of actual measured transfer and coherence function
estimates. Some of the most important sources of error are
listed below, along with methods of reducing these errors
to a tolerable level, Most of these effects are essentially of
nature that limit our ultimate measuring ability,

A) One of the most obvious requirements is to excite the
system with energy at all frequencies for which
measurements are expected. Be sure that the input
signal spectrum does not have “holes” where lit energy
exists. Otherwise, the coherence will be very low, and
the variance on H will be large.
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B) We have defined transfer and coherence functions as There are numerous other sources of potential error,
parameters of a linear system. Non-linearities will such as overloading the input, extraneous signal pick-up
generally shirt energy from one frequency to many via ground loops or strong electric or magnetic fields
new frequencies, in away which may be difficult to nearby, etc. There is no substitute for good estimates of
recognize. The result will be a bias in our estimates of transfer and coherence functions in determining modal
the system parameters, which may not be apparent parameters from real structures. Considerable care should
unless the excitation is changed. One way to reduce be exercised in setting up a measurement, and it is very
the effect of non-linearities is to randomize these valuable to do a test measurement on a known physical
contributions by choosing a randomly different input system to verify that all is working well.

signal for each of the m measurements. Subsequent
averaging will reduce these contributions, in the same
manner that noise is reduced,

C) Some amount of noise is always present, so it is
important to average enough measurements together to
reduce the variance of our estimates to some level that
we can live with. There is always a strong temptation
to cut the averaging time to an absolute minimum, and
then wonder why the resulting estimates seem to
change from one measurement to the next. The effects
of variance could easily be interpreted as valid
estimates of transfer or coherence function values.
Keep in mind that observed values of random
variables can easily exceed twice the standard
deviation.

D) Any measuring instrument is limited in time
resolution, or frequency bandwidth. However,
sampling a signal at discrete times also introduces a
form of amplitude distortion (called aliasing) that
converts high frequency energy to lower frequencies.
Thus, the time resolution, and frequency bandwidth
parameters, are generally dictated by an analog
anti-aliasing filter in front of the sampler. The shape of
this filter influences the in-band accuracy and the
stop-band rejection characteristics of the instrument.
Keep in mind that filters are not perfect, and there is
no such thing as a “stop” band, Strong signals always
leak through to some extent,

E) Analogous to time resolution limits, there is always a
limit on frequency resolution. This is ultimately
determined by the total effective time over which
coherent data is collected. The effect of this finite
collection time is the introduction of another type of
non-linear distortion (called leakage), which converts
energy at each frequency into energy within a
relatively narrow band nearby. This type of distortion
is controlled to some extent by weighting (or
windowing) the original time domain data. However,
there will always be considerable bias in any
measurements that are sufficiently close to a strong
signal.

Page 4 of 4



INITIALIZE G, Gy
AND G4 TO ZERO

.

MEASURE TIME WAVEFORMS —
(1), y(t)

I

FORM FOURIER
TRANSFORMS F(w), Y(w)

'

FORM POWER SPECTRA
ny, fo, Gyf

'

UPDATE AVERAGE VALUES
ny' fo' Gyf

'

< MORE AVERAGES

*NO

YES

FORM TRANSFER FUNCTION

G,
H(w) = _Y;(Q)_
Gt (w)
FORM COHERENCE FUNCTION
2 _ [Gulw)]|?

(w) ——————
Ggs(w) ny(w)

Figure 13. Measurement bar Power Spectrum Averaging'
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