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ABSTRACT 
The Modal Assurance Criterion (MAC) is currently the 
most popular method for measuring whether or not two 
mode shapes are strongly correlated.  In fact, MAC can be 
applied to any two sets of shape data, e.g. mode shapes, 
Operating Deflection Shapes (ODS's), or two time or fre-
quency domain waveforms. When used to compare two 
Frequency Response Functions (FRFs), MAC has been re-
named FRAC [3]. 

MAC values range between 0 & 1.  If MAC = 1 , the two 
shapes are identical.  A "rule of thumb" is that two shapes 
are similar or strongly correlated if MAC > 0.9, and they 
are different or weakly correlated if MAC < 0.9.   

MAC is a measure of the co-linearity of two shapes.  That 
is, it measures whether or not two shapes lie together on the 
same straight line. MAC has two limitations however; 

1) MAC does not measure the difference in value of two 
shapes. 

2) MAC requires at least two shape components. MAC = 1 
always for two shapes with one matching component (two 
scalars). 

In this paper, a new measure, called the Shape Difference 
Indicator (SDI), is introduced which overcomes the two 
limitations of MAC. This new measure is more useful for 
machinery and structural health monitoring applications 
where, for instance, changes in vibration levels or tempera-
tures are typically used to detect a fault. 

An example is given showing how SDI indicates that shape 
pairs are different even when their MAC values indicate that 
they are the same, i.e. they are co-linear.  A second example 
shows how SDI can be used not only to detect a fault, but 
also to correctly identify the fault by comparing its shape 
values with those in a database of known fault conditions. 
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INTRODUCTION 
Figure 1 shows a photo model of the Jim Beam test article.  
This structure is made up of three aluminum plates fastened 
together with six Allen screws.  Three screws attach the top 
plate to the vertical plate, and three screws attach the bottom 
plate to the vertical plate. 

A set of 99 Frequency Response Functions (FRFs) was ac-
quired during an impact test of the Jim Beam structure.  An 
instrumented impact hammer was used to measure the im-
pact force, and a tri-axial accelerometer was used to meas-
ure the structural responses to the impact force.  The struc-
ture was impacted at a fixed DOF (15Z), and the accelerom-
eter was attached to each of 33 different Points for each 
impact of the structure. During each impact, four signals 
(the force and three acceleration responses) were fed into a 
4-channel FFT-based spectrum analyzer where three FRFs 
were calculated. 

 
Figure 1 Jim Beam Structure. 

The imaginary parts of the 99 FRFs are overlaid in Figure 2.  
They clearly show the presence of 10 resonance peaks 
which indicate that at least 10 modes were excited. 

The FRFs were then curve fit using a least-squared-error 
curve fitting method to estimate the modal parameters for 
the 10 modes.  These parameters are listed in Figure 3. 
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Figure 2. Imaginary Part of 99 FRFs Overlaid. 

 
Figure 3. EMA Mode Shapes. 

An FEA model was also created from the Jim Beam photo 
model [2], and it was solved for its FEA mode shapes, or 
eigenvalues & eigenvectors. The FEA mode shapes are 
listed in Figure 4. 

The Jim Beam FEA model was meshed to provide more 
DOFs before solving for its FEA modes. Hence, the FEA 
mode shapes had 630 DOFs in them, but only 99 matched 
with the DOFs of the EMA mode shapes.  By comparing the 
shape component values in Figures 3 & 4, it is clear that the 
EMA shapes have different values in them than the FEA 
shapes. 

 
Figure 4. FEA Mode Shapes. 

MAC FORMULA 
For two shapes ({u},{v}), MAC is calculated with the for-
mula, [1] 

MAC = �{u}h{v}�
2

{u}h{u}{v}h{v}
   (1) 

{u}= complex shape (m-vector) 
{v}= complex shape (m-vector) 
m = number of matching DOFs between the shapes 
h - denotes the transposed conjugate vector 

MAC is a measure of the co-linearity of two shapes.  That 
is, if the two shapes lie together on the same straight line, 
MAC = 1.  Equation (1) is the Dot Product of the two 
shapes normalized by each of their magnitudes squared.  
Therefore, MAC is not sensitive to the actual values of the 
shapes themselves, only their "shapes".  If two shapes do 
not lie on the same line, then MAC<1.  If MAC=0, then the 
two shapes are orthogonal to, or linearly independent of 
one another.  

The MAC values between the EMA & FEA shapes of the 
Jim Beam are shown in Figure 5. These values clearly indi-
cate that 10 pairs of EMA & FEA mode shapes are strongly 
correlated. That is, each EMA shape is essentially the same 
as its corresponding FEA shape with a MAC value greater 
than 0.9. 

Figure 6 is a bar chart of the scale factors that should be 
applied to the EMA shapes to make them equal to the FEA 
shapes, in a least-squared-error sense [4].  That is, if the 
EMA shapes are multiplied by the scale factors in Figure 6, 
the EMA shape components will closely approximate the 
FEA shape component values, at least for the 99 matching 
DOFs. 

 
Figure 5. MAC Values Between EMA & FEA Shapes. 
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Figure 6. EMA Shape Scale Factors. 

The scaling matrix in Figure 6 also contains some non-zero 
off-diagonal values, indicating that linear combinations of 
several EMA shapes are needed in order to more closely 
match the FEA shape values [4]. 

After the scale factors in Figure 6 were applied to the EMA 
shapes, Figure 7 shows the MAC values between the re-
scaled EMA shapes and the FEA shapes.  Clearly, there is 
an improvement in the correlation between shape pairs. 

 
Figure 7. MAC Values Between Rescaled EMA & FEA Shapes  
Figure 7 indicates that the rescaled EMA shapes are closer 
to being co-linear with the FEA shapes. But the question 
remains, "How different are the EMA shape component 
values from the FEA shape component values?"  To an-
swer that question, a new measure of the difference between 
two shapes will be introduced. 

SHAPE DIFFERENCE INDICATOR (SDI) 
For two shapes ({u},{v}), the Shape Difference Indicator  is 
defined with the formula, 
 

SDI=�1-
�{v}-{u}�

2

{v}h{v}+{u}h{u}
�
2

   (2) 

 

or 

SDI=�2 real({v}h{u})
{v}h{v}+{u}h{u}

�
2

   (3) 

 
real�{v}h{u}� = the real part of the vector dot product 
{u}= complex shape (m-vector) 
{v}= complex shape (m-vector) 
m = number of matching DOFs between the shapes 
h - denotes the transposed conjugate vector 

SDI values are like MAC values.  That is, their values range 
between 0 & 1.  If SDI = 1, the two shapes have identical 
values.  If SDI < 1, the two shapes have different values 
between their matching DOFs.  Several examples illustrate 
the range of SDI values. 

• If {v} = {u}, SDI = 1 
• If {v} = 0 𝑜𝑜𝑜𝑜 {u} = 0, SDI = 0 
• If {v} = 2{u}, SDI = 0.64 
• If {v} = 10{u}, SDI = 0.04 

The SDI values between the EMA & FEA shapes of the Jim 
Beam are shown in Figure 8.  The SDI values are nearly all 
zero, indicating that the two sets of shapes have different 
component values. Closer examination of the shape compo-
nents in Figures 3 & 4 reveals that the EMA shapes are 
mostly imaginary valued (with phases close to 90 & 270 
degrees) while the FEA shapes are real valued (with phases 
of 0 & 180 degrees). Real valued shapes are also called 
normal shapes. 

The SDI values between the rescaled EMA shapes and the 
FEA shapes are shown in Figure 9.  Clearly, the rescaled 
EMA shapes are nearly equal in value to the FEA shapes. 

 
Figure 8. SDI Values For EMA & FEA Shapes 
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Figure 9. SDI Values For Rescaled EMA & FEA Shapes 

SDI AND CAP SCREW TORQUE 
SDI can be used to detect differences between two shapes, 
no matter what type of data they contain.  To illustrate this, 
different amounts of torque where applied to one of the Al-
len screws that attach the top plate to the back plate of the 
Jim Beam, as shown in Figure 10.  

 
Figure 10. Torque Applied To Allen Screw  

For each of six different torque values; 30 in-lbs, 25 in-lbs, 
20 in-lbs, 15 in-lbs, and 10 in-lbs, the modal frequency and 
damping of six modes of the Jim Beam were stored as shape 
components.  The modal frequency shapes are listed in Fig-
ure 11, and the modal damping shapes in Figure 12. 

The SDI values between all frequency shape pairs are dis-
played in the bar chart in Figure 13. The SDI values for all 
damping shape pairs are displayed in the bar chart in Figure 
13. 

All bars in Figure 13 not only indicate a clear change in the 
modal frequencies for each torque value, but they also indi-
cate that the SDI value dropped monotonically as the Allen 
screw was loosened from 30 in-lbs to 10 in-lbs,.  In other 
words, the modal frequencies shifted more between cases, 
as the torque was reduced.   On the other hand, the SDI bars 
in Figure 14 indicate that there was no significant change 
in the modal damping due to loosening the Allen screw. 

 
Figure 11. Modal Frequency Shapes 

 
Figure 12. Modal Damping Shapes 

CONCLUSIONS 
A new measure of the difference between two shapes, called 
the Shape Difference Indicator or SDI, was presented. 
Like MAC values, the SDI values range between 0 & 1.  
When SDI = 1, the two shapes are identical. When SDI < 1, 
the two shapes have different values. 

Unlike MAC though, SDI is sensitive to differences in the 
shape values, and also gives meaningful results even be-
tween two scalars. 

Both MAC and SDI were calculated between the EMA & 
FEA mode shapes of the Jim Beam.  The MAC values 
shown in Figure 5 indicate an acceptable level of correlation 
between the EMA & FEA mode shapes. 

The SDI values between the EMA & FEA shape pairs are 
shown in Figure 8 and are all nearly zero, indicating that the 
EMA shapes have different values than the FEA shapes.  A 
cursory comparison of the shape values in Figures 3 & 4 
verifies that the phases of the EMA shape components are 
approximately 90 degrees apart from the phases of the FEA 
shape components.  MAC rightly indicates that the shapes 
are nearly the same, but SDI indicates that their component 
values are different. 

Page 4 of 5 
 



IMAC XXXII, February 3-6, 2014  

 

 
Figure 13. SDI for Modal Frequency Shapes 

After the EMA shapes were rescaled to more closely match 
the FEA shapes [4], the MAC values in Figure 7 and the 
SDI values in Figure 9 both indicate a strong correlation 
between the EMA & FEA shape pairs. 

Next, the SDI calculation was used to classify the torque 
applied to one of the Allen screws used to hold the plates 
together on the Jim Beam.  Five different torque values were 
applied to one Allen screw, as shown in Figure 10.  With 
each torque value applied to the screw, FRFs were acquired 
and curve fit to obtain the modal frequency & damping of 
the first six modes of the beam.  Those values are listed as 
in Figures 11 & 12. 

Each table contains five shapes, one for each torque value.  
Each shape contains six components, each component con-
taining either a modal frequency or damping value.  The 
SDI bar chart values shown in Figure 13 were calculated 
between all frequency shape pairs in Figure 11. Likewise, 
the SDI bar chart values shown in Figure 14 were calculated 
between all pairs of shapes in Figure 12. 

The SDI values in Figure 13 indicate a significant differ-
ence in modal frequencies caused by the five different 
torque values. However, the SDI values in Figure 14 indi-
cate very little difference in modal damping values between 
the five different torque values. 

FAULT CORRELATION TOOL (FaCTs™) 
SDI has been implemented in the Vibrant Technology 
MechaniCom Machine Surveillance System™ and the 
MechaniCom Qualification Testing System™ as a tool for 
detecting and diagnosing faults in machinery and struc-
tures.  This Fault Correlation Tool, called FaCTs™, uses an 
ordered table & bar chart for correlating shapes based on 
their SDI values.  

 
Figure 14. SDI for Modal Damping Shapes 

To illustrate, suppose that multiple Jim Beam structures 
were being tested for proper assembly, and that 25 in-lbs 
was the correct torque value for tightening the Allen screw 
shown in Figure 10.  If shapes like those in Figure 11 were 
stored in the MechaniCom database, then each time a Jim 
Beam was tested, the SDI values between its frequency 
shape and the stored shapes would be ordered in a FaCTs™ 
table, from the highest to lowest SDI value.  The stored 
shape with the highest SDI value would then indicate 
whether the current torque used on the Allen screw was 
higher or lower than 25 in-lbs. 

Any type of engineering data, including vibration, tempera-
tures, pressures, flow rates, voltage, current, etc. can be used 
with SDI.  A FaCTs™ table then, is not only useful for de-
tecting a machine failure or improper structural assembly, 
but also for correlating it with a known machine failure or 
improper assembly. 
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