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ABSTRACT 
In most military aircraft and spacecraft applications, each 
payload structure must be pre-tested on a shake table to en-
sure that it can withstand the vibration environment that it 
will experience during flight.  Shaker testing is done using a 
control PSD which is designed to realistically represent the 
floor motion of the aircraft during takeoff, in flight, or dur-
ing landing.  Qualification testing is typically done by 
mounting the test article on one or more shakers, and excit-
ing it with a closed loop shaker testing system so that the 
base of the payload responds with the pre-specified control 
PSD.  

When a test vehicle is too massive to be tested by mounting 
it on shakers, it is impossible to perform a base-shake test 
on a shake table.  So the question arises; “Are there other 
more convenient driving points from which to excite the 
structure which will simulate a base-shake test?” 

In this approach, we derive a frequency domain Transmis-
sibility model which is used to calculate PSDs for conven-
ient driving points as functions of the base-shake PSDs.  
These calculated PSDs would then be used to control a 
shaker test that simulates the base-shake test.   

The Transmissibility model is validated by using an inverse 
calculation to calculate base-shake PSDs as functions of the 
new driving point PSDs.  Suitable driving points can then be 
chosen by comparing the calculated base-shake PSDs with 
the original pre-specified base-shake PSDs.  

INTRODUCTION 
When a test vehicle is too massive to be tested by mounting 
it on shakers, our assumption is that it can be tested by shak-
ing it at other driving points which will have the same dy-
namic effects as shaking it from its base.  To test at differ-
ent driving points, new control PSDs must be calculated 
which will cause the test article to respond in a manner 
which is similar to its response during a base-shake test.   In 
order to accomplish this, the dynamic properties between 
the base and the other driving points must be correctly mod-
eled. 

To calculate new control PSDs, we start with a standard set 
of time domain equations of motion that model the dynam-
ics of the structure.  After partitioning the equations into two 
sets, (one for moving DOFs (degrees of freedom) and one 

for the fixed base DOFs), a frequency domain model is de-
rived that relates the responses of the moving DOFs to the 
fixed base responses. This Transmissibility matrix model is 
then used to calculate control PSDs for new driving points 
as functions of the base-shake control PSDs.   

Modal Test 
The base-shake simulation was done using a modal model 
of the vehicle sitting on its wheels in its tied down configu-
ration, as shown in Figure 1. The modal model was used to 
synthesize elements of a Transmissibility model that relate 
base-shake responses to responses at other points on the 
structure.  

To develop a valid modal model, three different model tests 
were performed on the vehicle.  From these three tests, a 
modal model was constructed that represented the dynamics 
of the vehicle vibrating on its wheels.  The dominant modes 
of the model are its rigid body modes, i.e. the vehicle 
bouncing on its wheels.  In addition, several of the lowest 
frequency elastic modes were also excited, and were includ-
ed in the modal model. 
 

 
Figure 1 Test Vehicle in Base-Shake Configuration. 

Modal testing was done using an electro-dynamic linear 
stroke shaker, driven by a pure random signal.  Twenty tri-
axial accelerometers were used to measure responses, and a 
load cell was used to measure the force input. FRFs (Fre-
quency Response Functions) were calculated in the frequen-
cy span (0 to 50Hz), using 25 spectrum averages.  A total of 
60 FRFs were calculated from each of the three modal tests. 
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The modal model was then used to synthesize FRFs be-
tween each of the wheel hubs and other moving DOFs on 
the vehicle.  In addition, the modal model was used to calcu-
late driving point FRFs at the wheel hubs, which were then 
used to calculate the stiffness & damping of the tires.  Tire 
stiffness & damping directly influence the response of the 
vehicle to the base-shake PSDs. 

BACKGROUND THEORY 

Time Domain Equations 
In all FEA (Finite Element Analysis) and modal testing 
work, it is assumed that Newton’s Second Law adequately 
describes the dynamic behavior of the mechanical structure.  
Hence, the linear, time-invariant dynamics of the vehicle 
can be represented with the following set of differential 
equations; 
 
[ ]{ } [ ]{ } [ ]{ } { })t(f)t(xK)t(xC)t(xM =++   (1) 
 
where: 

[ ]M  = mass matrix (n by n) 
[ ]C  = damping matrix (n by n) 
[ ]K  = stiffness matrix (n by n) 
{ })t(x  = acceleration (n vector) 
{ })t(x  = velocity (n vector) 
{ })t(x  = displacement (n vector) 
{ })t(f = force (n vector) 
 n = DOFs (degrees of freedom) 
 t = time variable 

Frequency Domain Equations 
Using Laplace transforms, the time domain equations of 
motion can be transformed into the frequency domain, and 
written as; 
 
[ ] [ ] [ ]( ){ } { })s(f)s(xKsCsM 2 =++                 (2) 

 
where: 

 s = Laplace variable 
ω+σ= js  = complex frequency 

{ })s(x  = Laplace transform of the displacement (n vector) 
{ })s(f  = Laplace transform of the force (n vector) 

NOTE:  For convenience, the s-variable will be dropped 
from the displacement and force vectors in the following 
notation. 

Partitioning the matrices into the fixed base DOFs (sub-
script F) and the moving DOFs (subscript M), the equations 
become; 
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where: 
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}u{ F = displacement of the fixed DOFs 
}u{ M = displacement of moving DOFs 

}f{ F = forces applied to fixed DOFs 
}f{ M = forces applied to moving DOFs 

 
NOTE:  The aircraft floor DOFs are referred to as the fixed 
base DOFs because all mode shape components are zero 
(or fixed) at the bottom on the wheels.  This is unique to 
any base-shake problem. 

Separating the equations into two sets, one for the fixed base 
DOFs and the other for the moving DOFs; 
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Assumption: No forces are applied at the moving DOFs. 

During a base-shake, forces are only applied at the fixed 
base DOFs.  Using the moving DOFs equation and assum-
ing that ( Mf =0) gives: 
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Rearranging terms gives; 
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Solving for the moving DOFs gives; 
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Assumption:  There is no inertial coupling between the 
fixed base DOFs and moving DOFs.  

All of the base-shake forces are transmitted through the tires 
to the wheel hubs, and then to the rest of the structure.  
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Assuming that ( [ ] 0MMF = ), equation (7) becomes; 
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This equation expresses the moving DOFs as functions of 
the fixed base DOFs.   

FRFs for the Moving DOFs 
Using the moving DOFs equation (5) and setting ( }u{ F = 0) 
gives; 
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or; 
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The term [ ] [ ] [ ]( ) 1
MMMM

2
MM KsCsM −

++ in the above equation is 
simply the FRF matrix between the moving DOFs.  Re-
writing equation (9) in terms of the FRF matrix ( )[ ]sHMM

for the moving DOFs;
  

{ } ( )[ ] [ ] [ ]( ){ }FMFMFMMM uKsCsHu +−=                 (11)

       
Equation (11) expresses motions of the moving DOFs as 
functions of the motions of the fixed base DOFs.  

Stiffness & Damping Matrix 
The term [ ] [ ]( )MFMF KsC +  is the stiffness & damping ma-
trix between the fixed base DOFs (aircraft floor) and the 
moving DOFs.  Meaningful (non-zero) stiffness & damping 
values only exist between the fixed base and the wheel hub 
DOFs.  Therefore, the motion of all of the moving DOFs 
other than the wheel hubs depends on two dynamic proper-
ties; 

1) FRFs between the wheel hubs and other moving DOFs. 
2) Stiffness & damping of the tires, between the fixed 

base DOFs (aircraft floor) and the wheel hub DOFs. 

Transmissibility Matrix 
The product of these two matrices (FRFs and Stiffness & 
Damping) is a unit-less Transmissibility matrix.  The FRF 
matrix has units of (displacement/force) and the Stiffness & 
Damping matrix has units of (force/displacement), so their 
product is unit-less.  Equation (11) can be re-written as; 
 
{ } ( )[ ]{ }FM usTu =                 (12) 

where: 
 
( )[ ] ( )[ ] [ ] [ ]( )MFMFMM KsCsHsT +−=    

In summary, the FRF matrix ( )[ ]sHMM  contains the dynam-
ic properties between the wheel hubs and other moving 
DOFs of the vehicle.  The Stiffness & Damping matrix 
[ ] [ ]( )MFMF KsC +  contains the stiffness & damping of the 

tires, between the fixed base (aircraft floor) and the wheel 
hubs.  

NOTE:  The negative sign in front of the Transmissibility 
matrix is canceled by the negative signs in the off-diagonal 
terms of the damping [ ]MFC  and stiffness [ ]MFK  matrices.   

Power Spectral Density 
The control spectrum for the aircraft floor is specified as a 
Power Spectral Density (PSD).  Multiplying the Transmis-
sibility equation by the transposed conjugate of itself, gives 
a new equation in Power spectrum (or PSD) units; 
 
{ }{ } ( )[ ]{ }{ } ( )[ ]tt

FF
t

MM sTuusTuu =                 (13) 

where: 

{ }{ }t
FF uu  = base-shake PSD matrix 

{ }{ }t
MM uu  = new control PSD matrix 

 t – denotes the transposed conjugate 

This equation expresses the new control PSD matrix as a 
function of the base-shake PSD matrix.   

NOTE:  The diagonal elements of these matrices contain 
Auto PSDs, and the off-diagonal elements contain Cross 
PSDs.   

It is assumed that each wheel is subjected to independent 
random vibration. Therefore, the same base-shake PSD will 
be used for all diagonal elements and all off-diagonal ele-
ments are set to zero. 

Inverse Calculation 
The accuracy of the new control PSDs can be checked by 
performing an inverse calculation, i.e. calculating the base-
shake PSD matrix as a function of the new control PSD 
matrix. Pre-multiplying the previous equation by ( )[ ]tsT  
and post-multiplying it by ( )[ ]sT  gives; 
 
( )[ ] { }{ } ( )[ ] ( )[ ] ( )[ ]{ }{ } ( )[ ] ( )[ ]sTsTuusTsTsTuusT tt

FF
tt

MM
t =  

Solving for the base-shake PSD matrix { }{ }t
FF uu gives; 

{ }{ } ( )[ ]{ }{ } ( )[ ]tt
MM

t
FF sAuusAuu =   (14) 

where: 

[ ] ( )[ ] ( )[ ][ ] ( )[ ]t1t sTsTsT)s(A
−

=  
This equation expresses the base-shake PSD matrix as a 
function of the new control PSD matrix. 
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Clearly, there are cases where testing a vehicle using certain 
new control PSDs will not simulate the intended base-shake 
excitation. It depends on the dynamic properties represented 
by the modal model at the chosen moving DOFs of the 
structure.  For example, shaking at any moving DOF where 
one or more mode shapes are at or near a nodal point (zero 
motion) will not excite all of the modes, and therefore may 
not accurately simulate a base-shake test. The inverse calcu-
lation should help locate suitable driving points which will 
closely simulate a base-shake test. 

BASE-SHAKE PSDs 
For testing payloads in military aircraft, a base-shake PSD is 
pre-specified for the aircraft floor.  It is assumed that the 
PSD is applied at the base of each wheel in three directions 
(X, Y, & Z).  Therefore, the base-shake PSD matrix is a (12 
by 12) diagonal matrix.  Base-shake PSDs for the C-5 and 
C-17 aircraft are defined in Figure 2.   

TIRE STIFFNESS & DAMPNG 
The Stiffness & Damping matrix [ ] [ ]( )MFMF KsC + contains 
stiffness and damping values between the floor (bottom of 
each tire) and each wheel hub.  This (12 by 12) off-diagonal 
matrix contains different values for each wheel and each 
direction.  Each stiffness and damping element is obtained 
from the driving point FRF at each wheel hub, which is 
synthesized from the modal model. 

• Each element of the Stiffness matrix [ ]MFK  is obtained as 
the inverse of the flexibility line near DC of the driving 
point FRF.  Examples are shown in Figure 3. 

• The elements of the Damping matrix [ ]MFC  are cal-
culated with the following formula; 
C = Mass x (damping decay constant from the IRF) 

 

 

 
Figure 2A C-5 Aircraft PSD 

 

 

 
Figure 2B C-17 Aircraft PSD 

 

 
Figure 3 Flexibility Line at Low Frequency (in/lbf = 

1/Stiffness) 

The damping decay constant is the slope of the envelope of 
the log magnitude of the driving point IRF (Impulse Re-
sponse Function), the inverse FFT of each driving point 
FRF.  The damping decay constant is obtained by curve 
fitting a straight line to the driving point IRF.  Examples of 
logarithmic decay envelopes are shown in Figure 4.  
 
Mass is obtained from the mass line (at high frequency) of 
the driving point inertance (acceleration/force) FRF in each 
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direction at each wheel hub.  The driving point inertance is 
obtained by differentiating the synthesized (displace-
ment/force) FRF twice.  Examples of mass lines are shown 
in Figure 5. 

 
Figure 4 Logarithmic Decrement of Impulse Responses. 

 

 
Figure 5 Inertance Mass Line (in/sec^2-lbf = 1/mass). 

Figure 6 shows all 12 elements of the Stiffness and Damp-
ing matrix in overlaid format.  These 12 off diagonal terms 
(indicated by the DOFs in the spreadsheet), contain both a 
Stiffness (real part) and the Damping multiplied by frequen-

cy (imaginary part).  This matrix is multiplied by the mov-
ing DOFs FRF matrix to obtain the Transmissibility ma-
trix. 

 
Figure 6 Stiffness & Damping matrix. 

TRANSMISSIBILITY MATRIX 
The Transmissibility matrix is the product of the moving 
DOFs FRF matrix and the Stiffness & Damping matrix.  It 
is clear from this product that the Stiffness & Damping ma-
trix scales each element of the moving DOFs FRF matrix 
to reflect the stiffness and damping of each tire in a direc-
tion.  

If the tires had no stiffness or damping in them (a hypothet-
ical case), then base-shaking the vehicle would cause no 
motion of the moving DOFs.  On the other hand, if the tires 
were very stiff or had lots of damping, then base-shaking the 
vehicle would result in large motions of the moving DOFs. 

The moving DOFs FRF matrix need only be synthesized 
between the moving DOFs which might be used as the new 
driving points, and the DOFs of the wheel hubs.  Rather 
than use all 60 moving DOFs (the number of components in 
the experimental mode shapes), a smaller set of 9 DOFs was 
considered.  Figure 7 contains red arrows indicating the 9 
candidate driving point DOFs. 

Figure 8 shows the Transmissibility’s for one moving DOF 
(-10Y) due to the 4 base-shake PSDs at each wheel in the Z-
direction.  The entire Transmissibility matrix contains 108 
terms, nine rows for the moving DOFs and twelve columns 
for the fixed base DOFs (three directions at each wheel). 

NEW CONTROL PSD MATRIX 
A new control PSD matrix is calculated using the base-
shake PSD matrix and the Transmissibility matrix in equa-
tion (13).  The base-shake PSD matrix{ }{ }t

FF uu is a (12 by 
12) diagonal matrix. The Transmissibility matrix ( )[ ]sT  is 
a (9 by 12) full matrix. The resulting matrix of new control 
PSDs is a (9 by 9) matrix.  Elements of this matrix for only 
four moving DOFs due to base-shake PSDs in the Z direc-
tion are shown in Figure 9.  The new driving Point DOFs 
are -17Z, 41Z, -45Z, and 55Z.  The base-shake PSDs for 
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DOFs 150Z, 190Z, 350Z, and 390Z were used to calculate 
the new control PSDs. 

Figure 7 Convenient Driving Points. 
 

 
Figure 8 Transmissibility’s for moving DOF (-10Y) 

SIMULATED BASE SHAKE 
The validity of the new control PSDs is confirmed by using 
the Inverse equation (14) to calculate base-shake PSDs from 
the new control PSDs.  Figure 10 shows the base-shake 
PSDs which were calculated from the (4 by 4) control PSD 
matrix for DOFs -17Z, 41Z, 45Z, and 55 Z.  For this case, it 

is clear that the (4 by 4) matrix of base-shake PSDs is re-
produced with over three decades of accuracy. 
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CONCLUSIONS 
The question that was addressed in this paper is; “Is it pos-
sible to shake an aircraft payload from other more conven-
ient driving points using control PSDs that simulate a base 
shake test?”  To simulate a base-shake, a unique Transmis-
sibility model was derived to relate the base-shake PSDs to 
the new control PSDs required to simulate the base-shake. 

An experimentally derived modal model of the vehicle on 
its fixed base was used to synthesize the Transmissibility’s.  
The modal model was developed from three different shaker 
tests of the vehicle, using pure random excitation signals 
and 60 tri-axial accelerometers.  The resulting FRFs were 
curve fit to obtain experimental mode shapes. 

The modal model was then used to synthesize FRFs be-
tween the wheel hubs and all other moving DOFs on the 
vehicle.  By measuring motions at each wheel hub, all of the 
vehicle suspension dynamics were included in the modal 
model. The modal model was also used to synthesize driv-
ing point FRFs at the wheel hubs, from which the stiffness 
& damping of the vehicle tires were obtained.  Then, 
Transmissibility’s were calculated as the product of the tire 
stiffness & damping times the FRFs between the wheel hubs 
and the other moving DOFs,  

Finally, the new control PSDs were calculated using the 
Transmissibility’s and the base-shake PSDs.  The new con-
trol PSDs were validated using a round trip calculation as 
follows; 

Base-Shake PSDs > Transmissibility Model > Control PSDs 

Control PSDs > Inverse Model > Simulated Base-Shake PSDs 

The round trip was then used to show that four convenient 
driving Points on the vehicle simulated the base-shake quite 
accurately, for the Z direction. 

If a real vehicle behaves in a linear manner, so that its modal 
model adequately represents its dynamics, then the round 
trip calculation can be used to prove that a base-shake simu-
lation is indeed a valid test.  Of course, conclusive proof can 
only be obtained by performing a true base-shake on a vehi-
cle and comparing the base-shake and simulated base-shake 
results. 
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Figure 9 C-17 Control PSDs for 4 Z-direction Driving Points. 
 

 
Figure 10 C-17 Simulated Base-Shake PSDs. 

Page 8 of 8 
 


