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ABSTRACT 
Damping forces are typically ignored during the Finite Ele-

ment Analysis (FEA) of mechanical structures.  In most real 

structures, it can be assumed that there are several damping 

mechanisms at work, but they may be difficult to identify, 

and even more difficult to model.   

 

Since both mass & stiffness matrices are available during an 

FEA, a common method of modeling viscous damping is 

with a proportional damping matrix.  That is, the viscous 

damping matrix is assumed to be a linear combination of 

the mass & stiffness matrices.  Therefore, in order to model 

viscous damping with a proportional damping matrix, the 

two constants of proportionality must be determined. 

 

In this paper, a least-squared-error relationship between 

experimental modal frequency & damping and the propor-

tional damping constants of proportionality is developed.  

An example is included in which experimental modal pa-

rameters are used to calculate the constants of proportionali-

ty. The modal parameters of an FEA model with propor-

tional damping are then compared with the original experi-

mental modal parameters. 
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INTRODUCTION 
All experimental resonant vibration data is characterized by 

a decaying sinusoidal response when all forces are removed 

from the structure.  The overall response is modeled as a 

summation of contributions, each term due to a mode of 

vibration.  Each modal contribution is itself a decaying si-

nusoidal function. The decay envelope for each mode is 

modeled with a decreasing exponential function, and the 

decay constant in the exponent is called the modal damping 

coefficient.  It is also called the half power point, or 3dB 

point damping. 

 

VISCOUS DAMPING 
It is commonly assumed that displacement of the surround-

ing air by the surfaces of a vibrating structure is a dominant 

damping mechanism at work in most structures, at least 

those in earth’s atmosphere.  It is also assumed that this 

mechanism can be adequately modeled using a linear vis-

cous damping model. 

 

A linear viscous damping model, in which the damping or 

dissipative forces are proportional to the surface velocity, is 

used as the time domain model for this type of damping.   

 

The time domain linear differential equations of motion for 

a vibrating structure with viscous damping are written as; 

 

          )t(f)t(xK)t(xC)t(xM =++         (1) 

 

where: 

 M  = mass matrix (n by n) 

 C  = viscous damping matrix (n by n) 

 K = stiffness matrix (n by n) 

 )t(x = accelerations (n-vector) 

 )t(x = velocities (n-vector) 

 )t(x = displacements (n-vector) 

 )t(f = external forces (n-vector) 

n = number of degrees-of-freedom of the model 

 

Equation (1) is a force balance between the internal (iner-

tial, dissipative, and restoring) forces on the left-hand side 

and the externally applied forces on the right-hand side. 

 

Equation (1) describes the linear, stationary, viscously 

damped, dynamic behavior of a structure. The mass [M] & 

stiffness [K] matrices are typically synthesized from the 

physical properties and geometry of the structure, using an 

FEA software program. However, in most FEA practice 

today, the viscous damping matrix [C] is assumed to be ze-

ro.  That is, damping is ignored altogether.  

 

The frequency domain version of this equation is commonly 

used as the basis for determining the modes of a structure.  

Modes are solutions to the homogeneous form of this equa-

tion, shown as equation (2) below; 

 

     ( )   
+−=

=++

jp

0KpCpM 2

         (2) 
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Each non-trivial solution of this matrix equation consists of 

a pole location, p (also called an eigenvalue) and a mode 

shape,    (also called an eigenvector).  Each complex pole 

is made up of both the damping decay constant (σ) and the 

damped natural frequency (ω). 

 

PROPORTIONAL DAMPING MATRIX 
A proportional damping matrix is assumed to be a linear 

combination of the mass & stiffness matrices.  That is, the 

viscous damping forces are assumed to be proportional to 

the inertial and restoring forces in the structure. 

 

     KMC +=           (3) 

 

 = constant of mass proportionality 

 = constant of stiffness proportionality 

 

Once  & β have been determined, all of the matrices in 

equation (2) are known, and the modes of the damped struc-

ture can be calculated.  The question now becomes; “How 

can  & β be determined for a real structure?” 

 

PROPORTIONAL DAMPING COEFFCIENTS 
Modal frequency & damping estimates are routinely deter-

mined from experimental data using modern modal testing 

and analysis methods.  Experimental forced vibration data is 

commonly obtained in the form of a set of Frequency Re-

sponse Functions (FRFs).  An FRF is a special form of a 

Transfer Function.  Its numerator is the Fourier spectrum of 

a structural output (acceleration, velocity, or displacement 

response), and its denominator is the Fourier spectrum of 

the input (the force that caused the response). 

 

Modal frequency & damping estimates are obtained from 

one or more FRFs by curve fitting them, using an analytical 

model that includes frequency & damping as unknown pa-

rameters.  A set of modal frequency & damping estimates 

can therefore be obtained for all modes in the frequency 

band of the FRF measurements. 

 

These experimental frequency & damping estimates can 

then be used to calculate the proportional damping matrix 

coefficients,  & β.  The relationship between modal fre-

quency & damping and  & β is derived from equation (2). 

 

Substituting equation (3) into equation (2) and re-arranging 

terms gives; 
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            (4) 

If the damping term were removed from Equation (2), it 

would be the homogeneous equation of motion for an un-

damped structure.  Notice that equation (4) also has the 

same form as an equation for an un-damped structure.  A 

known property of the mode shapes    of an un-damped 

structure is that they are real-valued.  Modes with real-

valued mode shapes are also called normal modes. 

 

Because    is real-valued, the real and imaginary parts of 

equation (4) are not coupled.  Therefore, the real and imagi-

nary parts of equation (4) can be written as separate equa-

tions; 

 

 ( )  ( )( )   
 ( )  ( )   0K2M

01KM 22
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      (5) 

 

Putting these equations into the standard form for an un-

damped structure; 
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Both of these equations must be satisfied for a proportional-

ly damped structure.  The eigensolution to these equations 

has unique poles (or eigenvalues), and the coefficients of the 

mass matrix can be equated to each of the poles.  The equa-

tion for one of the poles of the un-damped structure is; 

 

( )
( )

( ) 2
22 2

1
−=



+−
=

+−

−−
        (7) 

 

where; 
2 = ( )22 +  = an un-damped natural frequency 

squared. 

 

This gives us a single equation with 2 unknowns ( & β) in 

it; 

 
22 +=            (8) 

 

or 

 

( )222 ++=          (9) 

 



 

 

Equation (9) can be used together with estimates of frequen-

cy & damping for two or more modes to compute the pro-

portional damping constants,  & β.  

 

LEAST-SQUARED-ERROR SOLUTION 

Given a set of modal frequencies & damping for n modes 

(n>=2), then n equations can be written; 
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This is an over-specified set of linear equations.  The least-

squared-error solution of these equations is written as; 

 

















































=









































2

n

2

2

2

1

2

n

2

2

2

1

n

2

1

2

n

2

2

2

1

1

1

1

111111
2









       

    (11) 

or; 

 

( ) 

































=































==

=

=

=
2n

1i

2

i

n

1i

2

i

n

1i

2

i

n

1i

2

ii

n

1i

i
N

2      (12) 

 

Equation (12) can be solved for α & β with the following 

matrix equation; 
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Equation (13) is the desired relationship between the fre-

quency & damping estimates for multiple modes and the 

proportional damping matrix coefficients,  & β.  

 

Least-squared-error estimates of  & β can be calculated 

using any number (2 or greater) of experimental modal fre-

quencies & damping and equation (13).  These estimates 

can then be used to add a proportional damping matrix to an 

FEA model. 

 

If the damped FEA model is then solved for its modes, the 

following question arises; “How well do the modal frequen-

cies & damping of the damped FEA model match the exper-

imental modal parameters from which the damped model 

was derived?”  This question is addressed with the follow-

ing examples. 

 

BEAM STRUCTURE 
We will consider the modes of the beam structure shown in 

Figure 1, also called the Jim Beam. This beam consists of 

three aluminum plates fastened together with cap screws.  

The top plate is fastened to the back plate with three screws, 

and the bottom plate is also fastened to the back plate with 

three screws.  

 

 

Figure 1 Jim Beam Structure. 

 

Modal Frequency & Damping 
The modal frequency & damping for the first 11 (lowest 

frequency) un-damped FEA modes and the Experimental 

Modal Analysis (EMA) modes of the Jim Beam are listed in 

Table 1.  The FEA frequencies were obtained as the eigen-

values of an un-damped FEA model, [1].  Because the FEA 

model was un-damped, the FEA modes have no damping. 

The EMA parameters were estimated by curve fitting a set 

of experimentally derived FRFs.   

 

Mode 
FEA 
Freq. 
(Hz) 

FEA 
Damp. 

(Hz) 

EMA 
Freq. 
(Hz) 

EMA 
Damp. 

(Hz) 

Mode 
Shape 
MAC 

1 61.405 0.0 96.944 5.6347 0.74 

2 143.81 0.0 164.95 3.1125 0.96 

3 203.71 0.0 224.57 6.5223 0.96 

4 310.62 0.0 347.56 5.1552 0.95 

5 414.4 0.0 460.59 11.502 0.93 

6 442.6 0.0 492.82 4.6424 0.96 

7 583.44 0.0 635.18 14.247 0.94 

8 1002.2 0.0 1108.2 4.964 0.90 

9 1090.8 0.0 1210.5 7.1292 0.88 

10 1168.3 0.0 1322.6 7.2498 0.84 

11 1388.2 0.0 1555.1 17.112 0.84 

Table 1. Un-Damped FEA & Damped EMA Modes. 

 



 

 

Each FEA modal frequency is less than its corresponding 

EMA frequency, indicating that the FEA model was less 

stiff than the actual Jim Beam structure.  However, the 

Modal Assurance Criterion (MAC) values between the 

mode shape pairs indicate that the FEA and EMA mode 

shapes are comparable.  Two mode shapes are strongly cor-

related if their MAC value is 0.90 or greater. 

 

A modal model consisting of 11 modes is called a truncated 

modal model because all of the modes of the actual Jim 

Beam are not present in the model.  In principle, all real 

structures have an infinite number of modes, but because all 

FEA models contain a finite number of DOFs, they will 

only yield a finite number of modes, or a truncated modal 

model.  Similarly, because FRF measurements are made 

over a finite frequency band, all experimentally derived 

modal models are truncated models. 

 
TWO EXTREME CASES 

Two extreme cases are possible with the coefficients  & β, 

namely,  > 0, β = 0 and  = 0, β > 0. 

 

Case #1 (β = 0) 
If β = 0, then viscous damping is only proportional to the 

mass distribution, and equation (8) reduces to; 

 

  = 2        () 

 

Assume that the Jim Beam is proportionally damped, and 

that its proportional damping matrix coefficients are; 

0,2 == .  Then equation (14) says that all modes of 

the beam will have the same modal damping; 

 

 Hz5.0sec/rad == .   

 

The coefficients 0,2 ==  were used to create a pro-

portional damping matrix from the mass & stiffness matri-

ces of the un-damped FEA model for the Jim Beam, and the 

damped FEA model was solved for its modes.  The ex-

pected result (all modes with damping = 0.5 Hz), is shown 

in Table 2. 

 

Mode 

Un-
damped 

FEA 
Freq. 
(Hz) 

Un-
damped 

FEA 
Damp. 

(Hz) 

Damped 
FEA 
Freq. 
(Hz) 

Damped 
FEA 

Damp. 
(Hz) 

Mode 
Shape 
MAC 

1 61.405 0.0 61.403 0.49975 1.00 

2 143.81 0.0 143.81 0.49975 1.00 

3 203.71 0.0 203.71 0.49975 1.00 

4 310.62 0.0 310.62 0.49975 1.00 

5 414.4 0.0 414.4 0.49975 1.00 

6 442.6 0.0 442.6 0.49975 1.00 

7 583.44 0.0 583.44 0.49975 1.00 

8 1002.2 0.0 1002.2 0.49975 1.00 

9 1090.8 0.0 1090.8 0.49975 1.00 

10 1168.3 0.0 1168.3 0.49975 1.00 

11 1388.2 0.0 1388.2 0.49975 1.00 

Table 2. Proportionally Damped FEA Modes ( 0,2 == ). 

 
Case #2 ( = 0) 

If  = 0, then viscous damping is only proportional to the 

stiffness distribution, and equation (8) reduces to; 

 

 =



= 2

2
       (15) 

where 



=  is the percent of critical damping of a mode. 

 

Assume that the FEA model of the Jim Beam is proportion-

ally damped, and  = 0.  Equation (15) says that for a given 

value of β the percent of critical damping of each mode is 

proportional to its un-damped frequency.  For %1=  for 

the first mode (with frequency 61.4 Hz), equation (15) gives 

β=0.0000518. 

 

The coefficients   = 0, β=0.0000518 were used to create a 

proportional damping matrix from the mass & stiffness ma-

trices of the un-damped FEA model, and the damped FEA 

model was solved for its modes.  The results are shown in 

Table 3.  Notice that the 61.4 Hz mode has the expected 1 % 

damping, and also that the percent of critical damping in-

creases as the modal frequency of the other modes increas-

es. 

  



 

 

 

 

Mode 

Un-
damped 

FEA 
Freq. 
(Hz) 

Un-
damped 

FEA 
Damp. 

(Hz) 

Damped 
FEA 
Freq. 
(Hz) 

Damped 
FEA 

Damp. 
(Hz) 

Damped 
FEA 

Damp. 
(%) 

1 61.405 0.0 61.402 0.61361 0.99928 

2 143.81 0.0 143.77 3.3657 2.3403 

3 203.71 0.0 203.6 6.7533 3.3151 

4 310.62 0.0 310.23 15.702 5.0549 

5 414.4 0.0 413.46 27.946 6.7437 

6 442.6 0.0 441.45 31.879 7.2026 

7 583.44 0.0 580.81 55.396 9.4947 

8 1002.2 0.0 988.81 163.46 16.31 

9 1090.8 0.0 1073.5 193.63 17.751 

10 1168.3 0.0 1147 222.11 19.012 

11 1388.2 0.0 1352.3 313.61 22.591 

Table 3. Damped FEA Modes ( = 0, β = 0.0000518). 

 
The list of EMA damping values in Table 1 shows a wide 

range of values, from 3.11 Hz to 17.11 Hz.  Clearly, neither 

of the two extreme proportional damping cases exists in the 

Jim Beam;  β = 0 which gives modes with the same damp-

ing, or  = 0 which give modes with percent of critical 

damping that increases with increasing frequency.   

 

Nevertheless, all of the EMA frequency & damping esti-

mates in Table 1 can be used in equation (13) to calculate 

least-squared-error estimates of  & β.  These estimates can 

in turn be used to create a proportionally damped FEA mod-

el for the Jim Beam. 

USING EMA FREQUENCY & DAMPING 
The EMA frequency & damping for the 11 modes in Table 

1 were used to calculate  & β for the Jim Beam using 

equation (13).  The least-squared-error estimates of  & β 

were; 

 

 = 76.6972, β = 8.0835 e-7 
 

These coefficients were used to create a proportional damp-

ing matrix from the mass & stiffness matrices of the un-

damped FEA model.  This model was solved for its modes, 

and the modal frequency & damping of the damped FEA 

model of the Jim Beam are shown in Table 4.   

The modal damping values of the damped FEA model do 

exhibit monotonically increasing values with frequency, 

indicating their stronger proportionality to the stiffness ma-

trix than to the mass matrix.  This is similar to extreme Case 

#2.  Even though the FEA damping values don’t closely 

match the EMA damping values, they are in the range of the 

EMA values.  This is a desirable property for making the 

FEA model useful for modeling the dynamics of the real 

structure. 

 

Mode 

Damped 
FEA 
Freq. 
(Hz) 

Damped 
FEA 

Damp. 
(Hz) 

EMA 
Freq. 
(Hz) 

EMA 
Damp. 

(Hz) 

Mode 
Shape 
MAC 

1 61.1 6.1129 96.944 5.6347 0.73 

2 143.68 6.1559 164.95 3.1125 0.97 

3 203.62 6.2088 224.57 6.5223 0.96 

4 310.56 6.3484 347.56 5.1552 0.96 

5 414.35 6.5395 460.59 11.502 0.93 

6 442.55 6.6008 492.82 4.6424 0.96 

7 583.4 6.9678 635.18 14.247 0.94 

8 1002.2 8.6542 1108.2 4.964 0.92 

9 1090.8 9.125 1210.5 7.1292 0.90 

10 1168.2 9.5695 1322.6 7.2498 0.86 

11 1388.2 10.997 1555.1 17.112 0.84 

Table 4. Damped FEA Modes ( = 76.6972, β = 8.0835 e-7). 

 

USING FEA FREQUENCY & EMA DAMPING 
Each FEA frequency in Table 1 is less than the frequency of 

its corresponding EMA frequency, indicating that the FEA 

model is less stiff than the real Jim Beam, as tested.  To de-

termine the influence of modal frequency on the calculation 

of  & β values, the FEA frequencies were used instead of 

the EMA frequencies in equation (13).  For this case, the 

least-squared-error estimates of  & β were;  

 

 = 76.4183, β = 1.0202 e-6 
 

These estimates were then used to create a proportional 

damping matrix from the mass & stiffness matrices of the 

un-damped FEA model. The modal parameters of the 

damped FEA model are again compared with the EMA pa-

rameters of the Jim Beam in Table 5.   

 

Mode 

Damped 
FEA 
Freq. 
(Hz) 

Damped 
FEA 

Damp. 
(Hz) 

EMA 
Freq. 
(Hz) 

EMA 
Damp. 

(Hz) 

Mode 
Shape 
MAC 

1 61.102 6.0933 96.944 5.6347 0.73 

2 143.68 6.1475 164.95 3.1125 0.97 

3 203.62 6.2142 224.57 6.5223 0.96 

4 310.56 6.3904 347.56 5.1552 0.96 

5 414.35 6.6316 460.59 11.502 0.93 

6 442.55 6.7091 492.82 4.6424 0.96 

7 583.4 7.1723 635.18 14.247 0.94 

8 1002.2 9.3007 1108.2 4.964 0.92 

9 1090.8 9.8949 1210.5 7.1292 0.90 

10 1168.2 10.456 1322.6 7.2498 0.86 

11 1388.2 12.258 1555.1 17.112 0.84 

Table 5. Damped FEA Modes ( = 76.4183, β = 1.0202 e-6). 

The modal damping values of the damped FEA model are 

monotonically increasing with frequency, again indicating 

proportionality more like extreme Case #2.  These FEA 

damping values are closer to the EMA values than when the 

EMA frequencies are used, but the differences between the 

two solutions are not significant.  The mode shape MAC 

values for this case are identical to the case where the EMA 

frequencies were used to estimate  & β. 

 



 

 

CONCLUSIONS 
An equation was derived for calculating estimates of the 

proportional damping matrix coefficients  & β from exper-

imental modal frequency & damping.  The equation for ob-

taining the  & β estimates was derived as a least-squared-

error solution to an over-specified set of linear equations, 

where  & β are functions of modal frequency & damping 

alone.  

These coefficients can be used to create a damped FEA 

model for a structure, which is more clearly useful for simu-

lation studies than an un-damped model.  This approach 

provides a straightforward way to add a viscous damping 

matrix to any FEA model, and solve for its FEA modes 

which include realistic values of modal damping.  

The damping values of a two differently damped FEA mod-

els were compared with the EMA damping estimates for the 

same structure.  Although the FEA modal damping didn’t 

match well on a mode-by-mode basis with all of the EMA 

estimates, the damping values of matching mode pairs were 

similar in value. 

The strongest reason for this disparity in FEA versus EMA 

values is that the proportional damping matrix is restricted 

by the distribution of mass & stiffness in the FEA model. 

On the other hand, the damping mechanisms that influenced 

the experimental damping values were most likely distribut-

ed differently than the mass & stiffness. 

In fact, the Jim Beam structure was tested while resting on a 

foam rubber pad, which clearly would have greater damping 

influence on the lower plate than on the other two plates.  

Therefore, depending on their mode shape deformations on 

the lower plate, some modes would be more strongly influ-

enced than others by the damping provided from the foam 

base.  This alone could account for the wide range of modal 

damping values (3.11 Hz to 17.11 Hz) among the EMA 

modes.  Because it was modeled using the mass & stiffness 

of the FEA model, the modal damping of the damped FEA 

model not only increased monotonically with frequency, but 

also had less range of values (6.09 Hz to 12.2 Hz). 

From our example, it can be concluded that a proportionally 

damped FEA model doesn’t necessarily yield modes with 

damping that perfectly match experimental damping values.  

Nevertheless, this approach is a useful and straightforward 

way to add realistic viscous damping to a un-damped FEA 

model. A damped FEA model, using proportional viscous 

damping derived from experimental data, is a lot closer to 

modeling the dynamics of a real structure than an un-

damped FEA model.  
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