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ABSTRACT 
Modes of vibration are defined as solutions to a set of linear 

differential equations which characterize the resonant dynamic 

behavior of structures.  One of the properties of these linear 

equation solutions is superposition.  That is, the overall re-

sponse of a structure can be represented as a summation of the 

responses of each of the modes. 

In this paper, it is shown how the superposition property of 

mode shapes can be used to; 

• Represent Operating Deflection Shapes (ODS's) as a sum-

mation of mode shape contributions. 

• Expand a set of shapes using a set of mode shapes with 

more DOFs in them. 

• Decompose a set of frequency or time domain waveforms 

into a summation of resonance curves. 

• Scale a set of EMA mode shapes, OMA mode shapes or 

ODS's using a modal model (a set of scaled mode shapes).  

• Derive the Modal Assurance Criterion (MAC) as a meas-

ure of the correlation between pairs of shapes. 

All of these applications lend more meaning to the term modal 

participation, which is commonly used to characterize struc-

tural vibration as a summation of resonant contributions.  This 

new definition of modal participation is illustrated with sever-

al examples. 
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INTRODUCTION 
When all excitation forces are removed from a structure, its 

resonant vibration response is characterized by a time domain 

decaying sinusoidal waveform, as shown in Figure 1.  This 

resonant response can be modeled as a summation of contri-

butions due to each of the structure's resonances.  Each reso-

nant contribution is itself modeled with a decaying sinusoidal 

waveform. The frequency of each resonant response is invari-

ant unless the physical properties or boundary conditions of the 

structure change. Each resonant frequency is therefore called a 

natural frequency of the structure. 

 

 
Figure 1. Resonant Response after Forces Removed 

 

The decay envelope of each resonant response is modeled with 

a decreasing exponential function, and the coefficient in the 

exponential term is called the damping decay constant. 

A mode of vibration is a compact mathematical description of 

a structural resonance. Not only are modal parameters solu-

tions to a set of differential equations, but they are also used to 

model the resonant vibration of a real structure, assuming that 

it behaves in a linear dynamic manner. 

The natural frequency of each structural resonance is also 

called its modal frequency.  Likewise, the damping decay con-

stant of a resonance is also called its modal damping coeffi-

cient.  This damping is also called the half power point or 3dB 

point damping [5]. 

 

BACKGROUND 

In this paper two different kinds of shapes will be discussed; 

Operating Deflection Shapes (ODS's) and Mode Shapes.   

ODS:  The response at a frequency or time value, of two or 

more DOFs on a structure.  A DOF is motion at a point in a 

direction. [7]. 

Therefore, the values at each frequency sample of a set of fre-

quency domain functions (Auto & Cross spectra, Fourier spec-

tra, FRFs, etc.) is an ODS.  

Likewise, the values at each sample of a set of time domain 

functions (Sinusoidal Responses, Impulse Response Functions, 

Auto & Cross Correlations, etc) is also an ODS. 
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Mode Shape:  A mode shape can either be an experimental 

(EMA) mode shape, derived by curve fitting  a set of experi-

mentally derived FRFs, or it can be an analytical (FEA) mode 

shape, an eigenvector calculated as part of an eigensolution to 

a set of linear homogeneous differential equations that model 

the dynamics of a structure [8]. 

Equating Two Sets of Shapes 

Two sets of complex valued shapes can be assembled into two 

matrices ([U] & [V]), where each column of each matrix con-

tains a shape.  The shapes in matrix [U] can be thought of as 

un-scaled shapes, and the shapes in matrix [V] as scaled 

shapes.  The two shape matrices can be equated to each other 

with the following matrix equation, 

[U][W] = [V]     (1) 

[V] = matrix of scaled complex shapes 

[U] = matrix of un-scaled complex shapes 

[W] = matrix of complex scale factors 

Writing out the matrices in terms of their components, 

[

𝑢1,1 ⋯ 𝑢1,𝑛𝑢
⋮ ⋱ ⋮

𝑢𝑚,1 ⋯ 𝑢𝑚.𝑛𝑢

] [

𝑤1,1 ⋯ 𝑤1,𝑛𝑠

⋮ ⋱ ⋮
𝑤𝑛𝑢,1 ⋯ 𝑤𝑛𝑢,𝑛𝑠

] = [

𝑣1,1 ⋯ 𝑣1,𝑛𝑠
⋮ ⋱ ⋮

𝑣𝑚,1 ⋯ 𝑣𝑚.𝑛𝑠

]  

      (m by nu)                (nu by ns)                (m by ns) 

nu = number of un-scaled shapes 

ns = number of scaled shapes 

m = number of matching shape DOFs or shape components 

Least-Squared-Error Solution 

Equation (2) below is the least-squared-error solution of Equa-

tion (1). In addition to requiring a matrix inverse, the other 

requirement for a solution is that the two matrices [U] & [V] 

have at least some matching shape DOFs, or shape compo-

nents. 

[W] = [[U]h[U]]
−1

[U]h[V]   (2) 

h - denotes the transposed conjugate matrix 

-1 - denotes the inverse matrix 

MODAL PARTICIPATION FACTORS 
When [U] is a matrix of mode shapes, and [V] is a matrix of 

ODS's, then each column of the scale factor matrix [W] is a 

measure of how much each mode shape contributes to or par-

ticipates in each ODS.  If [W] is a diagonal matrix (with non-

zero diagonals and zeros everywhere else), then each ODS is 

being dominated by a single mode shape. 

Example #1: Mode Shapes Dominating ODS's 

For this example, ODS's of the Jim Beam structure shown in 

Figure 2 were obtained by saving the cursor values at each 

resonance peak in the imaginary part of a set of experimental 

FRFs.    

 
Figure 2 Jim Beam Structure. 

 

 
Figure 3. Imaginary Parts of FRFs Overlaid. 

Figure 3 shows the imaginary parts of the FRFs overlaid on 

one another. 

The FRFs were acquired from an impact test of the Jim Beam 

structure.  The beam was impacted at point 15 in the vertical 

(Z) direction, and a tri-axial accelerometer was roved to the 33 

different (numbered) points on the beam.  An FRF was calcu-

lated between the impact force applied at DOF (15Z) and each 

of the resulting acceleration responses (3 DOFs at each Point).  

The ODS's taken as the resonance peak values of the 99 FRFs 

are listed in Figure 4. 

An FEA model of the Jim Beam structure was also built and 

solved for its mode shapes, or eigenvectors [3]. The FEA mode 

shapes are listed in Figure 5. 

The Jim Beam model was meshed to provide more DOFs be-

fore solving for its modes. Hence, the FEA mode shapes had 

630 (translational and rotational) DOFs in them, but only 99 

matched with the DOFs of the ODS's. 

Using these two shape matrices, the scale factor matrix [W] 

was calculated using equation (2).  Its magnitudes are shown 

in Figure 6. 
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Figure 4. Jim Beam ODS's. 

 
Figure 5. Jim Beam FEA Shapes. 

 
Figure 6. Participation of FEA Shapes in Jim Beam ODS's. 

This matrix is nearly diagonal, indicating that each experimen-

tally derived ODS is being dominated by an FEA mode shape. 

In other words, each FEA mode shape is a close representation 

of the spatial amplitude distribution of each structural reso-

nance. 

SHAPE EXPANSION 

After a participation matrix [W] has been calculated between 

the matching DOFs of two shape matrices ([U] & [V]), an ex-

panded set of shapes can be calculated with the following 

equation, 

[
Vm
Vu

] = [
Um

Uu
] [𝑊]    (3) 

[Um], [Vm] = sub-matrices of matching shape DOFs 

[Uu], [Vu] = sub-matrices of un-matched shape DOFs 

Equation (3) is useful for; 

1. Expanding an ODS with a few DOFs in it using a set of 

mode shapes with more DOFs in them. 

2. Expanding a set of EMA mode shapes using a set of FEA 

mode shapes with more DOFs in them. 

Example #2: Expanding EMA Mode Shapes 

In some experimental situations, it may not be possible to 

measure the structural responses at all desired DOFs because 

some DOFs are inaccessible.  However, if a set of FEA mode 

shapes correlate well with the EMA mode shapes at matching 

DOFs (meaning that the [W] is a nearly diagonal matrix), then 

equation (3) can be used to expand the EMA mode shapes to 

include the un-measured DOFs. 

Figure 7 shows the EMA mode shapes of the Jim Beam.  These 

modal parameters were obtained by curve fitting the 99 exper-

imental FRFs acquired during an impact test of the test article.  

Figure 8 is a bar chart of the scaling matrix [W] between the 

EMA & FEA mode shapes. Because it is nearly diagonal it 

indicates that the FEA mode shapes correlate one for one with 

the EMA mode shapes at the 99 matching DOFs. 

 
Figure 7. EMA Modes of the Jim Beam. 

Equation (3) was then used to solve for the expanded EMA 

shapes, and the MAC values between the expanded EMA 

shapes and the FEA shapes are shown in Figure 9.  (MAC is 

discussed in a succeeding section of this paper. [1], [2], [4])  

The MAC values in Figure 9 show that each expanded EMA 

shape also correlates well (is co-linear with) an FEA shape. 
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Figure 8. Scaling Matrix for EMA & FEA Mode Shapes. 

 

 
Figure 9. MAC values Between Expanded EMA & FEA Shapes. 

MODAL DECOMPOSITION OF WAVEFORMS 

A set of mode shapes with DOFs that match the DOFs in a set 

of time or frequency functions can be used to decompose those 

waveforms into contributions from each of the modes.  The 

scale factor matrix [W] in equation (1) will therefore contain a 

column of scale factors corresponding to each time or frequen-

cy sample.  These columns result in a set of waveforms show-

ing how each mode participates in the overall structural re-

sponse at each time or frequency value. 

Example #3: Modal Decomposition of FRFs 

In this example the EMA mode shapes of the Jim Beam will be 

used to decompose the experimental FRFs into multiple reso-

nance waveforms, one for each mode.  Equation (2) was used 

to calculate the decomposition (scale factors) of the FRFs at 

each frequency. 

An FRF is overlaid together with their ten modal resonance 

curves in Figure 10.  Notice how each resonance curve domi-

nates the overall FRF response by having a peak at or near 

each resonance peak in the FRF. 

It is important to note that this decomposition only requires 

the mode shapes. Modal frequency & damping are not used.  

In fact, the resonance curves can be curve fit to obtain modal 

frequency & damping estimates. 

 
Figure 10. FRFs Decomposed Using EMA Mode Shapes. 

MODAL MODEL 

Mode shapes are eigenvectors, and as such are only unique in 

"shape", not in value.  Therefore, mode shapes don't normally 

have units associated with them. 

However, if a set of mode shapes is scaled to properly account 

for the mass & stiffness properties of a structure, it is called a 

modal model. Modal models do have units associated with 

them.  A modal model is useful for several modeling & simula-

tion applications; 

• FRF Synthesis 

• FRFs can be created between any two DOFs of the 

mode shapes. 

• Overlaid synthesized & experimental FRFs provide a 

graphical comparison. 

• FRAC values between synthesized & experimental 

FRFs provide a numerical comparison. 

• MIMO Modeling 

• Time or frequency waveforms can be used. 

• Multiple Outputs calculated from Multiple Inputs. 

• Multiple Inputs calculated from Multiple Outputs. 

• Structural Dynamics Modification (SDM) 

• Provides rapid investigation of many "what if?" struc-

tural modifications. 

• Modes of the unmodified structure plus modification 

elements attached to a geometric model are required. 

• FEA elements are used by solution is much faster than 

FEA eigensolutions. 
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One of the popular ways to create a modal model is to scale the 

mode shapes to yield Unit Modal Masses.  FEA mode shapes 

are commonly scaled using Unit Modal Mass scaling [3].  

Scaled mode shapes have units associated with them which are 

(response units/(force units - seconds)).  

Example #4:  Scaling Mode Shapes to Unit Modal Masses 

In this example, the EMA mode shapes of the Jim Beam will 

be scaled using its FEA mode shapes, which are already scaled 

to Unit Modal Masses.  First, equation (2) is solved for the 

scale factors [W], where [U] = the un-scaled EMA mode 

shapes and [V] = the FEA shapes.  The magnitudes of the [W] 

are shown in Figure 8.  Next, the scale factors [W] and the un-

scaled EMA mode shapes [U] are used in equation (3) to scale 

the EMA mode shapes to Unit Modal Masses. 

To confirm the scaling, the scaled EMA mode shapes and the 

FEA mode shapes are again used in equation (2) to calculate 

scale factors, which are shown in Figure 10.  The diagonal 

scale factors are nearly all "1", indicated that the EMA mode 

shapes and FEA mode shapes are both scaled to Unit Modal 

Masses. 

 
Figure 10. Scaling Matrix After UMM Scaling of EMA Shapes. 

MODAL ASSURANCE CRITERION (MAC) 

For two shapes {𝑢𝑖}  and {𝑣𝑖} , the scaling equation 

reduces to, 

 

{

𝑢1,𝑖
⋮

𝑢𝑚,𝑖

} [𝑤𝑖,𝑗] = {

𝑣1,𝑗
⋮

𝑣𝑚,𝑗

}        (4)       

 
m = number of matching shape DOFs or shape components 

The single scale factor for equating the two shapes is, 

𝑤𝑖,𝑗 =

{𝑢1,𝑖
∗ … 𝑢𝑚,𝑖

∗
}{

𝑣1,𝑗
⋮

𝑣𝑚,𝑗

}

{𝑢1,𝑖
∗ … 𝑢𝑚,𝑖

∗ }{

𝑢1,𝑖
⋮

𝑢𝑚,𝑖

}

   (5) 

* - denotes the complex conjugate 

Now, if  {𝑢𝑖}  and {𝑣𝑖}  are interchanged in equation (4), the 

scale factor that equates them is written,         

𝑧𝑖,𝑗 =

{𝑣1,𝑖
∗ … 𝑣𝑚,𝑖

∗
}{

𝑢1,𝑗
⋮

𝑢𝑚,𝑗

}

{𝑣1,𝑖
∗ … 𝑣𝑚,𝑖

∗ }{

𝑣1,𝑖
⋮

𝑣𝑚,𝑖

}

     (6)  

The Modal Assurance Criterion is simply the product of the 

two scale factors, 

 

𝑀𝐴𝐶𝑖,𝑗 = 𝑤𝑖,𝑗𝑧𝑖,𝑗

=

|{𝑢1,𝑖
∗ … 𝑢𝑚,𝑖

∗ } {

𝑣1,𝑗
⋮

𝑣𝑚,𝑗

}|

2

{𝑢1,𝑖
∗ … 𝑢𝑚,𝑖

∗ } {

𝑢1,𝑖
⋮

𝑢𝑚,𝑖

} {𝑣1,𝑗
∗ … 𝑣𝑚,𝑗

∗ } {

𝑣1,𝑗
⋮

𝑣𝑚,𝑗

}

 

MAC has values between 0 & 1. For {𝑢𝑖} = {𝑣𝑗}  MAC = 1.  

Otherwise, MAC < 1. 

 
Figure 11 MAC values between EMA & FEA mode shapes. 

CONCLUSIONS 
Several applications of the linear relationship between two 

shape matrices were explored in this paper.  Each shape matrix 

can consist of ODS's, EMA mode shapes, OMA mode shapes, 

FEA mode shapes, or any matrix, the columns of which can be 
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called "shapes". The linear relationship in Equation (1) only 

involves the shapes themselves, not their frequencies (or 

damping in the case of EMA mode shapes), and is only valid 

for matching DOFs or shape components between the two 

matrices.  

It was shown that this relationship can be used for scaling 

shapes, expanding shapes, and for time or frequency waveform 

decomposition.  It was also shown how the Modal Assurance 

Criterion (MAC) is derived from this relationship [1], [2]. 

It was also pointed out that when the scaled matrix [V] con-

tains ODS's and the un-scaled matrix [U] contains mode 

shapes, the columns of the scale factor matrix [W] are a meas-

ure of the participation of each mode in each ODS, more 

commonly known as modal participation factors.  Moreover, 

when a set of time or frequency domain waveforms is decom-

posed using mode shapes, the decomposition at each time or 

frequency sample a measure of the modal participation at that 

(time or frequency) sample. 

All of these examples verify that the linear superposition prop-

erty of mode shapes is useful in a number of different ways for 

visualizing and understanding how the resonant vibration of a 

mechanical structure can be characterized in terms of its 

modes. 
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