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ABSTRACT  

In a rotating machine, the dominant forces are applied at mul-

tiples of the machine running speed, called orders. An order-

tracked ODS is assembled from the peaks at one of the order 

frequencies in a set of response frequency spectra of a ma-

chine. An order-tracked ODS is a convenient way to visualize 

and monitor the health of the machine.   

In this paper, it is shown how modes participate in an order-

tracked ODS of a rotating machine, and how they participate 

differently at different operating speeds. It is also shown how 

the mode shapes can be used to expand an order-tracked ODS 

so that it is suitable for display on a model of the machine. 

With an animated ODS display, relative vibration levels and 

vibration hot spots can be observed while the machine is run-

ning. 
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INTRODUCTION 

It is well known that most rotating machines will exhibit dif-

ferent vibration levels under different loads and speeds.  A 

convenient way to troubleshoot these problems is to visualize 

the operating deflection shapes (ODSs) of the machine in “real 

time”.  This is conveniently done by attaching multiple accel-

erometers to the machine surfaces, and acquiring vibration data 

from the machine while it is running.  In addition to visualizing 

the deflection of the machine in real time, an ODS can be used 

to diagnose machine faults by numerically comparing its cur-

rent values with previously archived values. 

All machines and mechanical structures have resonances, also 

called modes of vibration.  Each resonance has a unique natu-

ral frequency, damping value, and mode shape.  It is well 

known that if a resonance is excited, the response of the ma-

chine or structure can be excessive.  In this sense, modes are 

referred to a “mechanical amplifiers”.  Over time, sustained 

excessive vibration levels will cause a variety of failures.  

When excited, modes participate in or contribute to the over-

all vibration response of a machine.  In an ideal sense, a me-

chanical structure has an infinite number of modes, but in a 

practical sense only a few modes participate significantly in its 

response. 

In this paper, it is first shown how modal participation in an 

ODS is calculated.  Once the modal participation is known, 

mode shapes with many components in them can be used to 

expand the ODS, thus providing a more accurate and realistic 

description of the machine’s vibration.  When displayed in 

animation, an expanded ODS is useful for observing overall 

vibration levels and for quickly spotting areas of excessive 

vibration (hot spots) under different operating conditions. 

Operating Deflection Shape (ODS) 

If two or more sensors (located at different points and/or in 

different directions) are used to measure the response of a ma-

chine while it is running, this data is called an Operating De-

flection Shape (ODS).  An ODS is a vector of complex val-

ues, each component of which has a magnitude & phase, or 

real & imaginary parts. When an ODS is displayed in anima-

tion on a model of the machine, it shows how each test point is 

deflected with a magnitude & phase relative to the deflection 

of all other test points. 

In order to display it in animation, an ODS must have the cor-

rect relative magnitude & phase between all its components.  

This relative magnitude & phase requirement among its com-

ponents is the reason why it is called a deflection “shape”. 

Ways to Acquire ODS Data 

There are two ways to acquire an ODS so that the relative 

magnitudes & phases of all its components are valid; 

1. Acquire data simultaneously from all sensors  

A multi-channel simultaneous acquisition system is re-

quired in order to acquire data from all sensors at once.  

An ODS can be assembled either from the same sample of 

data in simultaneously acquired time records, or from the 

same sample of data in multiple frequency (Fourier) spec-

tra which were calculated from the acquired time records. 

 

2. Acquire data simultaneously from at least two sensors, 

with one sensor remaining at the same fixed reference 

sensor location throughout the acquisition process. 

 

In this case, data is acquired sequentially in multiple 

measurement sets, with each set containing data from one 

or more roving sensors and the same (fixed) reference 

sensor. In order to preserve the correct relative magnitude 
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& phase in all shape components, a cross channel func-

tion must be calculated between all roving responses and 

the reference response. A Cross spectrum between the rov-

ing and reference responses is commonly calculated.  An-

other function called an ODS FRF can be calculated.  An 

ODS FRF is the Auto spectrum of a roving response com-

bined with the phase of the Cross spectrum between the 

roving and reference responses. 

ORDER-TRACKED ODS 

In a rotating machine, excitation forces are caused by unbal-

ances, shaft misalignments, broken or misaligned gear teeth, 

reciprocating parts, and many other faults. All of these faults 

involve rotating parts, and therefore create excitation forces 

that are cyclic in nature.  These forces are functions of the run-

ning speed of the machine and are called “orders”. The first 

order is equal to the running speed, the second order equal to 

twice the running speed, the third order equal to three times the 

running speed, and so on.  In a rotating machine, the dominant 

forces are applied only at multiples of the machine running 

speed.  In other words, forces are applied only in discrete nar-

row frequency bands. 

An ODS assembled from the peaks at one of the order frequen-

cies in a set of response frequency spectra is called an order-

tracked ODS. The machine speed should remain unchanged 

during data acquisition, but could change between acquisitions 

due to varying operating conditions.  Therefore, in order to 

obtain an order-tracked ODS, the machine speed must also be 

measured (using a tachometer), and order peaks located in the 

spectra from which an order-tracked ODS can be assembled. 

VARIABLE SPEED ROTATING MACHINE 

Figure 1 shows a variable speed rotating machine, instrument-

ed with eight tri-axial accelerometers. An accelerometer is 

attached to the top of each bearing block, and six accelerome-

ters are attached to the base plate; three on the front edge and 

three on the back edge.  This test setup was used to measure 

order-tracked ODSs under different machine speeds. 

 
Figure 1. Variable Speed Rotating Machine 

A laser tachometer with its beam pointed at the outer wheel of 

the machine was used to measure the machine speed, as shown 

in Figure 1.  The outer wheel had reflective tape on it, so the 

laser measured the once-per-revolution speed of the machine. 

A spectrum of the tachometer signal is shown in Figure 2.  The 

running speed of the machine is obtained from the lowest fre-

quency peak in the tachometer spectrum. 

 
Figure 2. Laser Tachometer Spectrum. 

Figure 3 contains a model of the machine that was used to dis-

play ODSs in animation.  Each of the test points is displayed as 

a cube icon and is numbered. 

 
Figure 3 Rotating Machine Model. 

MULTIPLE MEASUREMENT SETS 

A total of 24 ODS FRFs were calculated from data acquired 

sequentially from the machine in eight measurement sets.  

Each measurement set was acquired with a 4-channel analyzer 

that simultaneously acquired four signals of accelerometer 

data.  In each measurement set, three time waveforms were 

acquired from one of the tri-axial accelerometers, together with 

a time waveform from the reference accelerometer. Accel-

erometer 1Z, which measured the Z direction acceleration on 

the outside bearing block, was used as the reference.   

Figure 4 shows a typical ODS FRF acquired from the rotating 

machine.  Its magnitude is the Auto spectrum of the accelera-
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tion response, and its phase is the phase of the Cross spectrum 

between the response and the reference response.   

Notice that the units of the ODS FRF are velocity units, indi-

cating that it has been integrated from acceleration to velocity.  

Notice also that the magnitude peak appears to be somewhat  

 
Figure 4. Typical ODS FRF. 

“widened”.  This is because the time waveforms were win-

dowed with a “flat top” window.  When a waveform is a nar-

row band, this window makes the peak values at the order fre-

quencies more accurate [2].  

An order-tracked ODS is assembled by taking the peak values 

of the ODS FRFs at one of the order frequencies.  This is done 

by using a “peak cursor”, that finds the peak value in a small 

band surrounding each order peak. 

Figure 5 shows two order-tracked ODSs displayed side by side 

on the machine model, one at 985 RPM and the other at 2280 

RPM.  Of course, an animated display of the ODSs makes it 

easier to see the difference between them.  The deflections at 

the eight test points are the actual values acquired from the 

accelerometers. The deflections at all of the other un-

measured points are being “geometrically interpolated” from 

the deflections of nearby test points. The MAC value [4] of the 

two shapes is displayed on the right.  Its low value (0.10) indi-

cates that the two shapes are very different. 

MODE SHAPES OF THE MACHINE 

It is apparent from the display in Figure 5 that the ODS proba-

bly contains participation of both the “rigid body” and the 

“flexible” mode shapes of the base plate and bearing blocks.  

Since the machine is resting on four rubber mounts (one under 

each corner), its rigid body modes will participate in its ODS. 

The machine has six rigid body mode shapes.  These mode 

shapes describe the free-free motion of the machine in space, 

but it will be shown that they also dominate its ODSs since it is 

resting on four soft springs.   

The rigid body and flexible body mode shapes of the machine 

were obtained from a finite element model of the base plate 

and bearing blocks.  The easiest way to do this is to treat each 

of the three parts separately.   

FEA models of the base plate and one of the bearing blocks 

were built first.  Then the FEA modes of the base plate and the 

bearing block were calculated separately.  

 
Figure 5. ODSs at 985 & 2280 RPM. 

 

Figure 6. Mode Shapes of the Base Plate. 

Figure 6 lists the FEA mode shapes of the base plate.  It was 

modeled using 112 FEA brick elements.  Figure 7 lists the 

FEA modes of the bearing block. It was modeled using 71 

FEA bricks and 6 FEA prisms. Notice that both substructures 

have 6 rigid body modes.  

The Structural Dynamics Modification (SDM) method [7] was 

used to “attach” the two bearing blocks to the base plate using 

stiff springs. This is called “substructuring”. FEA springs 

were used to model the connections of the blocks to the base 

plate.  Figure 8 shows one of the bearing block models con-

nected to the base plate using 18 very stiff FEA springs (with 

1E6 lbf/in stiffness).  Each spring applies stiffness between a 

point on a bearing block and a point on the base plate in one 

(X, Y, or Z) direction. 
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Figure 7. Mode Shapes of a Bearing Block. 

 

Figure 8. Springs Connecting Base Plate & Bearing Blocks. 

 

Figure 9. FEA Mode Shapes of Combined SubStructures. 

The mode shapes of the base plate and bearing blocks attached 

together are listed in Figure 9. Notice that there are still six 

rigid body mode shapes, as expected. 

MODAL PARTICIPATION MATRIX 

The mode shapes of the base plate and bearing blocks will be 

used to expand the order-tracked ODSs acquired from the eight 

accelerometers on the rotating machine.  As a first step, a 

modal participation matrix that contains the contribution of 

each mode shape to the ODSs is calculated.  The modal partic-

ipation matrix, introduced in a previous paper [1], is defined 

by equation (1) below, 

[𝑈][𝑃] = [𝑉]                                                         (1) 

[𝑉] = matrix of ODSs (n by o) 

[𝑈] = matrix of mode shapes (e by m) 

[𝑃] = Modal Participation matrix (m by o) 

 

Writing out equation (1) for matching shape components, 

[

𝑢1,1 ⋯ 𝑢1,𝑚
⋮ ⋱ ⋮

𝑢𝑛,1 ⋯ 𝑢𝑛.𝑚
] [

𝑝1,1 ⋯ 𝑝1,𝑜
⋮ ⋱ ⋮

𝑝𝑚,1 ⋯ 𝑝𝑚,𝑜

] = [

𝑣1,1 ⋯ 𝑣1,𝑜
⋮ ⋱ ⋮

𝑣𝑛,1 ⋯ 𝑣𝑛,𝑜
]  

      (n by m)                (m by o)                      (n by o) 

n = number of matching mode shape & ODS components 

m = number of mode shapes 

o = number of ODSs 

e = number of mode shape components  

Each column of the modal participation matrix contains com-

plex valued scale factors that define the contribution of each 

mode shape to each ODS.  The modal participation matrix is 

calculated as a least squared solution to equation (1), 

[P] = [[U]h[U]]
−1

[U]h[V]                                (2) 

h - denotes the transposed conjugate matrix 

-1 - denotes the inverse matrix 

ODS EXPANSION 

Once the modal participation matrix has been calculated, the 

ODS expansion is done by post-multiplying the mode shape 

matrix by the modal participation matrix, 

[�̿�] = [𝑈][𝑃]                        (3)                

[�̿�] = expanded ODS matrix 

MODAL PARTICIPATION AT TWO SPEEDS 

ODS data was acquired from the rotating machine in Figure 1 

at two different speeds. The modal participation of the first 10 

FEA modes in the 985 RPM ODS was calculated using equa-

tion (2), and is shown in Figure 10. 

The modal participation shows that the first three rigid body 

modes are the dominant contributors to the 985 RPM ODS. 

These modes are being excited and are contributing the most to 

the ODS at this speed.  At this speed, the machine is simply 

“bouncing” on its rubber mounts. 
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Figure 10A. Magnitude of Modal Participation at 985 RPM. 

 

Figure 10B. Real Part of Modal Participation at 985 RPM. 

 

Figure 10C. Imaginary Part of Modal Participation at 985 RPM. 

The modal participation of the first 10 FEA modes in the 2280 

RPM ODS is shown in Figure 11. The participation of modes 

2, 5, and 6 shows that they are dominating the 2280 ODS.  At 

this higher speed, the machine is “rocking” on its rubber 

mounts with more deflection at the outer bearing location. 

 

Figure 11A. Magnitude of Modal Participation at 2280 RPM. 

 

Figure 11B. Real Part of Modal Participation at 2280 RPM. 

 

Figure 11C. Imaginary Part of Modal Participation at 2280 RPM. 

Notice also that the participation scale factors of the dominate 

modes at both speeds have significant real and imaginary 

parts.  This is because the ODSs are complex valued and the 

FEA mode shapes are real valued, also called normal modes. 

In order to match the normal mode shapes to complex ODSs, 

the complex modal participation factors, when multiplied by 

the normal mode shapes, create expanded ODSs that are com-

plex valued. 
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ODS EXPANSION 

Finally, equation (3) was used to expand the 985 and 2280 

RPM ODSs.  The MAC values for each expanded and un-

expanded ODS pair are shown in Figure 12.  The MAC value 

for the acquired and expanded 985 RPM ODSs is 0.87, indi-

cating a strong correlation between this experimental and its 

expanded ODS.  The MAC value between the experimental 

and expanded 2280 RPM ODSs is 0.94, indicating an even 

stronger correlation between this experimental and its expand-

ed ODS.  

The two off-diagonal MAC values are between the expanded 

985 RPM ODS and the experimental 2280 RPM ODS, and 

between the expanded 2280 RPM ODS and the experimental 

985 RPM ODS.  Both of these values are very low (<0.10), 

again indicating that the ODSs of the machine at these two 

speeds are quite different from one another. 

 

Figure 12. MAC - Expanded vs. Un-expanded ODSs. 

CONCLUSIONS 

A linear relationship between matrices of mode shapes and 

matrices of ODSs was presented in a previous paper [1], and 

was used here to calculate a modal participation matrix.  

Equation (1) merely expresses the well known superposition 

property of mode shapes.  That is, the overall vibration of a 

machine or structure contained in its ODS, can be represented 

as a linear combination of its mode shapes. 

In a wide variety of practical cases, modes can been used to 

characterize and further understand resonant vibration. When-

ever the dynamics of a structure can be represented by its 

modes, this superposition property can be utilized, and the 

participation of each mode in the ODS can be calculated. 

This modal participation matrix shows which modes are domi-

nating an ODS, and therefore which modes are being excited 

the most under a specific operating condition. 

A key advantage of this technique is that only mode shapes 

are required to calculate the modal participation and expand an 

ODS for display in animation. Modal frequency and damping 

are not required. 

In order to construct an analytical modal mode, it was also 

shown how substructuring and the SDM method can be used to 

“tie together” several parts of a machine using stiff FEA 

springs. SDM calculates the overall mode shapes using the 

mode shapes of each part, and these mode shapes are easy to 

obtain by modeling each part in a free-free condition.  

ODSs of most rotating machines are complex valued because 

they are caused by cyclic forces within the machine.  What 

makes this technique very appealing is that a set of FEA nor-

mal mode shapes can be “curve fit” to complex ODS data, 

resulting in complex modal participation factors.  These partic-

ipation factors can then be used to expand the ODS, thus 

providing a realistic animated display of machine deflections 

on a 3D model of the machine. 
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