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Structural Dynamics Modification (SDM) also known as eigenvalue modification [1], has 

become a practical tool for improving the engineering designs of mechanical systems. It provides 

a quick and inexpensive approach to investigating the effects of design modifications on the 

resonances of a structure, thus minimizing the need for costly prototype fabrication and testing. 

Modal Models 

SDM is unique in that it works directly with a modal model of the structure, either an 

Experimental Modal Analysis (EMA) modal model, a Finite Element Analysis (FEA) modal 

model, or a Hybrid modal model consisting of both EMA and FEA modal parameters. EMA 

mode shapes are obtained from experimental data and FEA mode shapes are obtained from an 

analytical finite element computer model. 

A modal model consists of a set of scaled mode shapes. In this Tech Paper the mode shapes 

used in a modal model are scaled to Unit Modal Masses, called UMM mode shapes. FEA 

mode shapes are commonly scaled to UMM mode shapes using the mass matrix of the FEA 

model. In this Tech Paper , it will be shown how EMA mode shapes can also be scaled to UMM 

mode shapes without using a mass matrix. 

A modal model preserves the mass, damping, and stiffness properties of a mechanical structure, 

and is used by SDM to represent the dynamic properties of the unmodified structure. 

Design Modifications 

Once the dynamic properties of an unmodified structure are defined in the form of its modal 

model, SDM can be used to predict the dynamic effects of mechanical design modifications to 

the structure. These modifications can be as simple as additions to or removals of point masses, 

linear springs, or linear dampers, or more complex modifications can be modeled using FEA 

elements such as rod and beam elements, plate elements (membranes) and solid elements such as 

prisms, tetrahedrons, and brick elements. 

SDM is computationally very efficient because it solves an eigenvalue problem in modal space. 

In contrast, FEA mode shapes are obtained by solving an eigenvalue problem in physical space. 

Another advantage of SDM is that the modal model of the unmodified structure must only 

contain data for the DOFs (points & directions) where the modification elements are attached to 

a geometric model of the structure. SDM then provides a new modal model of the modified 

structure, as depicted in Figure 1. 
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Figure 1. SDM Input-Output Diagram 

Eigenvalue Modification 

A variety of numerical methods have been developed over the years which only require a modal 

model to represent the dynamics of an unmodified structure.  Among the more traditional 

methods for performing these calculations are modal synthesis, the Lagrange multiplier method, 

and diakoptics.  However, the local eigenvalue modification technique, developed primarily 

through the work of Weissenburger, Pomazal, Hallquist, and Snyder [1], is the technique 

commonly used by the SDM method today. 

All of the early development work on SDM was done primarily with analytical FEA mode 

shapes. The primary objective was to provide a faster means of investigating physical changes to 

a structure without having to solve a much larger eigenvalue problem. FEA mode shapes are 

obtained by solving the problem in physical coordinates, whereas SDM solves a much smaller 

eigenvalue problem in modal coordinates. 

In 1979, Structural Measurement Systems (SMS) began using the local eigenvalue modification 

method together with an EMA modal model derived from a modal test. [2]-[5]. The 

computational efficiency of this method made it very attractive for use in a laboratory on a 

desktop calculator or computer. More importantly, it gave reasonably accurate results using only 

a small number of EMA mode shapes in the modal model of the unmodified structure. 

A modal model with only a few mode shapes in it is called a truncated modal model. Regardless 

of whether EMA or FEA mode shapes are used, truncated modal models have been shown to 

adequately characterize the dynamics of a structure. The effects of using truncated modal models 

was investigated in [2] and [3]. 

The fundamental calculation of SDM is the solution of an eigenvalue problem. The solution is 

computationally efficient because a small dimensional eigenvalue problem is solved. 

Computational speed is virtually independent of the number of DOFs in the modal model. 

Hence, large modifications involving many DOFs are handled as efficiently as smaller 

modifications. 

The SDM computational process is straightforward. All physical modifications are converted 

into appropriate changes to the mass, stiffness, & damping matrices of the equations of motion, 
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in the same manner as an FEA model is constructed. These modification matrices are then 

transformed to modal coordinates using the mode shapes of the modal model of the unmodified 

structure. The resulting transformed modifications are then added to the modal properties of the 

unmodified structure, and these new equations are solved for the new modes of the modified 

structure. 

To illustrate this process, if there were 1000 DOFs in an FEA model, solving for its FEA mode 

shapes requires the solution of an eigenvalue problem with mass & stiffness matrices of the size 

(1000 by 1000).  By contrast, if the dynamics of an unmodified structure is represented with a 

modal model consisting of  ten mode shapes, new mode shapes resulting from a structural 

modification are found by solving an eigenvalue problem with transformed mass & stiffness 

matrices of the size (10 by 10). 

The size of the eigenvalue problem in modal space is independent of the number of structural 

modifications made to the structure. Many modification elements can be attached to a 3D 

geometric model of the structure, and the SDM solution time does not significantly increase. 

SDM requires two inputs, 

1. A modal model that adequately represents the dynamics of the unmodified structure 

2. Finite elements attached to a geometric model of the structure that characterize the 

structural modifications 

With these inputs, SDM calculates a new modal model that represents the dynamics of the 

modified structure. It will also be shown in later examples that SDM obtains results that are very 

comparable to those obtained from an FEA eigen-solution. 

Measurement Chain to Obtain an EMA Modal Model 

If a modal model containing EMA mode shapes is used with SDM, the accuracy of the mode 

shapes will directly influence the accuracy of the results calculated with the SDM method. To 

understand the potential errors that can occur in an EMA modal model, in is important to review 

the steps in the measurement chain required to obtain EMA mode shapes. 

Three major steps are commonly used to obtain an EMA modal model 

1. Acquire experimental vibration data from the test article 

2. Calculate a set of Frequency Response Functions (FRFs) from the vibration data 

3. Curve fit the FRFs to estimate the EMA mode shapes of the test article 

Critical Issues in the Measurement Chain 

Following is a list of issues to consider in implementing a measurement chain, 

1. Non-linearity of the test structure dynamics 

2. Boundary conditions of the test structure 

3. Excitation technique 

4. Force and response sensors 

5. Sensor mounting 

6. Sensor calibration 

7. Sensor cabling 
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8. Signal acquisition and conditioning 

9. Spectrum analysis 

10. FRF calculation 

11. FRF curve fitting 

12. Creating an EMA modal model 

All of these issues involve assumptions that can impact the accuracy of the EMA modal model 

and ultimately the accuracy of the SDM results. Only a few of these critical issues will be 

addressed here, namely; sensors, sensor mounting, sensor calibration, FRF calculation, and FRF 

curve fitting. 

Calculating FRFs from Experimental Vibration Data 

To create an EMA modal model, a set of calibrated inertial FRF measurements is required. These 

frequency domain measurements are unique in that they involve subjecting the test structure to a 

known measurable force while simultaneously measuring the structural response(s) due to the 

force. The structural response is measured either as acceleration, velocity, or displacement using 

sensors that are either mounted on the surface or are non-contacting but still measure the surface 

vibration. 

An FRF is a special case of a Transfer Function. A Transfer Function is a frequency domain 

relationship between any type of input signal and any type of output signal. An FRF defines the 

dynamic relationship between the excitation force applied to a structure at a specific location in a 

specific direction and the resulting response motion at another specific location in a specific 

direction. The force input point & direction and the response point & direction are referred to as 

the Degrees of Freedom (or DOFs) of the FRF. 

An FRF is also called a cross-channel measurement. It requires the simultaneous acquisition of 

both the excitation force and one of its resultant responses. This means that at least a 2-channel 

data acquisition system or spectrum analyzer is required to measure the signals required to 

calculate an FRF. The force (input) and the response (output) signals must also be 

simultaneously acquired, meaning that both channels of data are amplified, filtered, and 

sampled without introducing any artificial phase difference between the two signals. 

Sensing Force & Motion 

The excitation force is typically measured with a load cell. The analog signal from the load cell 

is fed into one of the channels of the data acquisition system. The response is measured either 

with an accelerometer, laser vibrometer, displacement probe, or another sensor that can measure 

the surface vibration. Accelerometers are most often used today because of their availability, 

relatively low cost, and variety of sizes and sensitivities. The important characteristics of both 

the load cell and accelerometer are: 

1. Sensitivity 

2. Usable amplitude range 

3. Usable frequency range 

4. Transverse sensitivity 

5. Mounting method 
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Sensitivity Flatness 

The most common type of sensor today is referred to as an IEPE/CCLD/ICP/Deltatron/Isotron 

style of sensor. This type of sensor requires a 2-10 milli-amp current supply, typically supplied 

by the data acquisition system, and has a built-in charge amplifier and other signal conditioning. 

It also has a fixed sensitivity. Typical sensitivities are 10mv/lb or 100mv/g. 

The ideal frequency spectrum for any sensor is a “flat magnitude" over its usable frequency 

range. The documented sensitivity of most sensors is typically given at a fixed frequency (such 

as 100Hz, 159.2Hz, or 250Hz), and is referred to as its 0-dB level.  

The sensitivity of an accelerometer is specified in units of mv/g or mv/(m/s^2) with a typical 

accuracy of +/-5% at a specific frequency. The frequency spectrum of all sensors in not perfectly 

flat, meaning that its sensitivity varies somewhat over its useable frequency range. The response 

amplitude of an ICP accelerometer typically rolls off at low frequencies and rises at the high end 

of its useable frequency range. This specification is the flatness of the sensor, with a typical 

variance of +/-10% to +/-15%.  

All of this equates to a possible error in the sensitivity of the force or response sensor over its 

usable frequency range. This means that the amplitude of an FRF might be in error by the 

amount that the sensitivity changes over its measured frequency range.  

Transverse Sensitivity  

Adding to its flatness error is the transverse sensitivity of a sensor. Both force and vibration have 

a direction associated with them. That is, a force or motion is defined at a point in a specific 

direction. 

A uniaxial (single axis) transducer should only output a signal due to force or motion in the 

direction of its sensitive axis. Ideally, any force or motion that is not along its sensitive axis 

should not yield an output signal, but this is not the case with most sensors. 

All sensors have a documented specification called transverse sensitivity or cross axis 

sensitivity.  Transverse sensitivity specifies how much of the sensor output is due to a force or 

motion that is sensed from a direction other than the measurement axis of the sensor. 

Transverse sensitivity is typically less than 5% of the sensitivity of the measurement axis. For 

example, if an accelerometer has a sensitivity of 100mv/g, its transverse sensitivity might be 5%, 

or about 5mv/g. Therefore, 1g of motion in a direction other than the sensitive axis of an 

accelerometer might add 5mv (or 0.05g) to its output signal. 

Sensor Linearity 

Another area affecting the accuracy of an FRF is the linearity of each sensor output signal 

relative to the actual force or vibration. If a sensor output signal were plotted as a function of its 

input force or vibration, all its output values should lie on a straight line. Any values that do not 

lie on a straight line are an indication of the non-linearity of the sensor.  The non-linearity 

specification is typically less than 1% over the useable frequency range of a sensor. 

As the amplitude of the measured signal becomes larger than the specified input amplitude range 

of the sensor, the signal will ultimately cause an overload in the internal amplifier of the sensor. 
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This overload results in a clipped output signal from the sensor. A clipped output signal is the 

reason why it is very important to measure amplitudes that are within the specified amplitude 

range of a sensor. 

Sensor Mounting 

Attaching a sensor to the surface of the test article is also of critical importance. The function of 

a sensor is to “transduce” a physical quantity, for example the acceleration of the surface at a 

point in a direction. Therefore, it is important to attach the sensor to a surface so that it will 

accurately transduce the surface motion over the frequency range of interest. 

Mounting materials and techniques also have a useable frequency range just like the sensor itself. 

It is very important to choose an appropriate mounting technique so that the surface motion over 

the desired frequency range is not affected by the mounting material of method. The use of 

magnets, tape, putty, glue, or contact cement are all convenient for attaching sensors to surfaces. 

But attaching a sensor using a threaded stud is the most reliable method, with the widest 

frequency range. 

Leakage Error 

Another error associated with the FRF calculation is a result of the FFT algorithm itself. The 

FFT algorithm is used to calculate the Digital Fourier Transform (DFT) of the force and response 

signals. These DFT's are then used to calculate an FRF. 

Finite Length Sampling Window 

The FFT algorithm assumes that the time domain window of acquired digital data (called the 

sampling window) completely contains the acquired signal. If an acquired signal is not fully 

captured within its sampling window, the DFT of the signal will contain leakage error. 

Leakage-Free Spectrum 

The spectrum of an acquired signal will be leakage-free if one of the following conditions is 

satisfied. 

1. If a signal is periodic (like a sine wave), then it must make one or more complete cycles 

within the sampled window 

2. If a signal is not periodic, then it must be completely contained within the sampled 

window 

If an acquired signal does not meet one of the above conditions, there will be errors in its DFT, 

and errors in the FRF that is calculated using the DFT. Leakage error causes both amplitude and 

frequency errors in a DFT and in a FRF that uses the DFT.  

Leakage-Free Signals 

Leakage is eliminated by using testing signals that meet one of the two conditions stated above. 

During Impact testing, if the impulsive force and the impulse response signals are both 

completely contained within their sampling windows, leakage-free FRFs will be calculated 

using those signals. 
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During shaker testing, if a Burst Random or a Burst Chirp (fast swept sine) shaker signal is used 

to excite the structure, leakage-free FRFs can be calculated using those signals. A Burst 

Random or Burst Chirp signal is terminated prior to the end of its sampling window so that both 

the force and structural response signals are completely contained within their sampling 

windows. 

Reduced Leakage 

If one of the two leakage-free conditions cannot be met by the acquired force and response 

signals, then leakage errors can be minimized in their spectra by applying an appropriate time 

domain window to the sampled signal before it is transformed using the FFT. A Hanning 

window is typically applied to pure (continuous) random signals. Pure random signals are never 

completely contained within their sampling windows. Using a Hanning window prior to 

transforming them with the FFT will minimize leakage in their frequency spectrum. 

Linear versus Non-Linear Dynamics 

Both EMA and FEA modal models are defined as solutions to a set of linear differential 

equations. Using a modal model assumes that the linear dynamic behavior of the test article can 

be adequately described using these equations. However, many real-world structures may not 

exhibit linear dynamic motion. 

Real-world structures can have dynamic behavior ranging from linear to slightly non-linear to 

severely non-linear. If the test article is in fact undergoing non-linear motion, significant errors 

will occur when attempting to extract modal parameters from a set of FRFs which are based on a 

linear dynamic model. 

Random Excitation & Spectrum Averaging 

To reduce the effects of non-linear behavior, random excitation combined with signal post-

processing must be applied to the acquired data. The goal is to yield a set of linear FRF 

estimates to represent the dynamics of the structure subject to a certain force level. 

This common method for testing a non-linear structure is to excite it with one or more shakers 

using random excitation signals. If these signals continually vary over time, the random 

excitation will excite the non-linear behavior of the structure in a random fashion. 

Each time a non-linear signal is transformed using the FFT, the non-linear components of the 

signal will appear as random noise spread over the frequency range of the DFT. If multiple 

DFTs of the response of a randomly excited structure are averaged together, the non-linear 

components (random noise) will be “averaged out” of the average DFT, leaving only the linear 

resonant response peaks. 

Curve Fitting FRFs 

The first step of an FRF-based EMA is to calculate a set of FRFs that accurately represent the 

linear dynamics of the test article over a frequency range of interest. The second step is to curve 

fit the FRFs using a linear parametric model of an FRF. The unknown parameters of the FRF 

model are the modal parameters of the structure. The goal of these two steps is to obtain an 

accurate EMA modal model. 
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If the test article has a high modal density including either closely coupled modes (two modes 

represented by one resonance peak) or repeated roots (two modes with the same frequency but 

different mode shapes), extracting an accurate EMA modal model from the FRFs can be 

challenging.  

The linear parametric curve fitting model is a summation of contributions from all modes at 

each frequency sample of the FRFs. This model is commonly curve fit to the FRF data using a 

least-squared-error method. This broadband curve fitting approach also assumes that all 

resonances of interest have been adequately excited over the frequency span of the FRFs. 

A wide variety of FRF-based curve fitting methods are commercially available today. All FRF-

based curve fitting methods assume that the FRFs adequately represent the linear dynamics of 

the test article and are leakage-free. 

Modal Models and SDM 

SDM will give accurate results when an accurate modal model of the unmodified structure is 

used. The modal model can contain EMA mode shapes, FEA mode shapes, Hybrid mode shapes 

consisting of both EMA and FEA modal parameters, or a mixture of all three types of mode 

shapes. 

The advantage of SDM is that with a reasonably accurate modal model of the unmodified 

structure, numerous structural modifications can be quickly explored. This could include 

exploring alternate boundary conditions which are difficult to model with an FEA model. 

Later in this Tech Paper , a Hybrid modal model containing both translational & rotational DOFs 

will be used with SDM to model the attachment of a RIB stiffener to an aluminum plate. The 

new mode shapes calculated by SDM will then be compared with both FEA & EMA mode 

shapes of the plate with the RIB attached to it. 

Structural Dynamic Models 

The dynamic behavior of a mechanical structure can be modeled either with a set of differential 

equations in the time domain, or with an equivalent set of algebraic equations in the frequency 

domain.  Once the equations of motion have been created, they can be used to calculate mode 

shapes and to calculate structural responses to static loads or dynamic forces. 

The dynamic response of most structures usually includes resonance-assisted vibration. 

Dynamic resonance-assisted response levels can far exceed the deformation levels due to static 

loads. Resonance-assisted vibration is often the cause of noisy operation, uncontrollable 

behavior, premature wear out of parts such as bearings, and unexpected material failure due to 

cyclic fatigue. 

Structural Resonances 

Two or more spatial deformations assembled into a vector format is called an Operating 

Deflection Shape (or ODS). 

A mode of vibration is a mathematical representation of a structural resonance. An ODS is a 

summation of mode shapes. 
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Each mode is represented by its natural frequency (its modal frequency), a damping decay 

constant (the decay rate of a resonance when forces are removed from the structure), and its 

spatially distributed amplitude levels (its mode shape).  These three modal properties (frequency, 

damping, and mode shape) provide a complete mathematical representation of each structural 

resonance. A mode shape is the contribution of a resonance to the overall deformation (the ODS) 

on the surface of a structure at each location in each direction.  

It is shown later that both the time and frequency domain equations of motion can be represented 

solely in terms of modal parameters. This powerful conclusion means that a set of modal 

parameters can be used to completely represent the linear dynamics of a structure. 

When properly scaled, a set of mode shapes is called a modal model. The complete dynamic 

properties of the structure are represented by its modal model. SDM uses the modal model of the 

unmodified structure together with the FEA elements that represent structural modifications as 

inputs and calculates a new modal model for the modified structure. 

Truncated Modal Model 

All EMA and FEA modal models contain mode shapes for a finite number of modes. An EMA 

modal model contains a finite number of mode shapes that were obtained by curve fitting a set of 

FRFs that span a limited frequency range. An FEA modal model also contains a finite number 

of mode shapes that are defined for a limited range of frequencies. Therefore, both EMA and 

FEA modal models represent a truncated (approximate) dynamic model of a structure. 

Except for so-called lumped parameter systems, (like a mass on a spring), all real-world 

structures have an infinite number of resonances. But SDM still provides usable results because 

of the following property. 

The dynamic response of most structures is dominated by the excitation of their low frequency 

modes. 

When using the SDM method, all the low frequency modes should be included in the modal 

model. In order to account for the higher frequency modes that have been left out of the 

truncated modal model, it is also important to include several modes above the highest 

frequency mode of interest in the modal model. 

Sub structuring 

To solve a sub structuring problem, where one structure is mounted on or attached to another 

using FEA elements, the free-body dynamics (the six rigid-body modes) of the structure to be 

mounted on the other must also be included in its modal model. This will be illustrated by the 

example later in this Tech Paper  

Rotational DOFs 

Another potential source of error in using SDM is that certain modifications require mode shapes 

with both translational and rotational DOFs. Normally only translational motions are acquired 

experimentally, and therefore the resulting FRFs and mode shapes only have translational DOFs. 

If a modal model does not contain rotational DOFs, accurate modifications that involve torsional 

stiffnesses and/or rotary inertia effects cannot be accurately modeled. 
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FEA mode shapes derived from rod, beam, and plate (membrane) elements have rotational 

DOFs included in them. When rotational stiffness and inertia are important, FEA mode shapes 

with rotational DOFs in them can be used in a Hybrid modal model as input to SDM. Later in 

this Tech Paper , SDM will be used to model the attachment of a RIB stiffener to a plate 

structure. Mode shapes with rotational DOFs and spring elements with rotational stiffness will be 

used to correctly model the joint stiffness between the RIB and the plate. 

Time Domain Dynamic Model 

Modes of vibration are defined by assuming that the dynamic behavior of a mechanical structure 

or system can be adequately described by a set of time domain differential equations. These 

equations are a statement of Newton’s second law (F = Ma). They represent a force balance 

between the internal inertial (mass), dissipative (damping), and restoring (stiffness) forces, and 

the external forces acting on the structure.  This force balance is written as a set of linear 

differential equations,  

   [𝐌]{�̈�(𝐭)}+[𝐂]{�̇�(𝐭)}+[𝐊]{𝐱(𝐭)} = {𝐟(𝐭)}       (1) 

where 

[𝐌]  Mass matrix (n by n) 

[𝐂]  Damping matrix (n by n) 

[𝐊]  Stiffness matrix (n by n) 

{�̈�(𝐭)}  Accelerations (n-vector) 

{�̇�(𝐭)}  Velocities (n-vector) 

{𝐱(𝐭)}  Displacements (n-vector) 

{𝐟(𝐭)}  Externally applied forces (n-vector) 

These differential equations describe the dynamics between n-discrete points & directions or n-

degrees-of-freedom (DOFs) of a structure. To adequately describe its dynamic behavior, enough 

equations can be created involving as many DOFs as necessary. Even though equations could be 

created between an infinite number of DOFs, in a practical sense only a finite number of DOFs is 

ever used, but they could still number in the 100's of thousands. 

Notice that the damping force is proportional to velocity. This is a model for viscous damping. 

Different damping models are addressed later in this Tech Paper . 

Finite Element Analysis (FEA) 

Finite element analysis (FEA) is used to generate the coefficient matrices of the time domain 

differential equations written above.  The mass and stiffness matrices are generated from the 

physical and material properties of the structure. Material properties include the modulus of 

elasticity, inertia, and Poisson’s ratio (or “sqeezability”). 

Damping properties are not easily modeled for real-world structures. Hence the damping force 

term is usually left out of an FEA model. Even without damping, the mass and stiffness terms are 

enough to model resonant vibration, hence the equations of motion can be solved for modal 

parameters. 
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FEA Modes 

The homogeneous form of the differential equations, where the external forces on the right-hand 

side are zero, can be solved for mode shapes and their corresponding natural frequencies.  This is 

called an eigen-solution.  Each natural frequency is an eigenvalue, and each mode shape is an 

eigenvector. The analytical mode shapes are referred to as FEA mode shapes. The 

transformation of the equations of motion (1) into modal coordinates is covered later in this Tech 

Paper  

Frequency Domain Dynamic Model 

In the frequency domain, the dynamics of a mechanical structure or system are represented by a 

set of linear algebraic equations, in a form called a Transfer Function model or MIMO 

(Multiple Input Multiple Output) model.  This model contains Transfer Functions between all 

combinations of input and response DOF pairs, 

)}s(F)]{s(H[)}s(X{ =  (n-vector)      (2) 

where 

𝐬  Laplace variable (complex frequency) 

[𝐇(𝐬)]  Transfer Function matrix (n by n) 

{𝐗(𝐬)}  Laplace transform of displacements (n-vector) 

{𝐅(𝐬)}  Laplace transform of externally applied forces (n-vector) 

This model is also a complete description of the dynamics between n-DOFs of a structure. 

Equations can be created between as many DOF pairs of the structure as necessary to adequately 

describe its dynamic behavior over a frequency range of interest. Like the time domain 

differential equations (1), these equations (2) are finite dimensional. 

Parametric Models Used for Curve Fitting 

Curve fitting is a numerical process by which an analytical FRF model is matched to 

experimental FRF data in a manner that minimizes the squared error between the experimental 

data and the analytical curve fitting model.  The purpose of curve fitting is to estimate the 

unknown modal parameters of the curve fitting model. More precisely, the modal frequency, 

damping, and mode shape of each resonance in the frequency range of the FRFs is estimated by 

curve fitting an analytical model to a set of FRFs.  

Rational Fraction Polynomial Model 

The Transfer Function matrix in equation (2) can also be expressed analytically as a ratio of two 

polynomials. This is called a rational fraction polynomial matrix form of the Transfer Function 

matrix. Expressed in terms of m-modes, the denominator polynomial has (2m +1) terms and 

each numerator polynomial has (2m terms).  

2m

22m
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1

2m

0

1-2m

3-2m

2

2-2m

1

1-2m

0
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−−
 (n by n)   (3) 
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where 

=m  Number of modes in the analytical curve fitting model 

2m

22m

2

12m

1

2m

0 a...sasasa ++++ −−   the characteristic polynomial 

2m210 a ... ,a a ,a ,,   real valued coefficients 

][b...]s[b]s[b]s[b -12m

3-2m

2

2-2m

1

-12m

0 ++++   numerator polynomial matrix (n by n) 

][b... ][b][b][b 1-2m210 ,,,,   real valued coefficient matrices (n by n) 

Each Transfer Function in the (n by n) matrix has a unique numerator polynomial (n by n) 

matrix and the same denominator polynomial, called the characteristic polynomial. 

Partial Fraction Expansion Model 

The Transfer Function matrix in equation (2) can also be expressed in partial fraction expansion 

form. When expressed as shown in equations (4) & (5) below, any Transfer Function value at 

any frequency is a summation of terms, each term called the resonance curve of a mode of 

vibration.  


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−
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m
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][r
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*

k

k

t

kkk

)ps(j2

}u}{u{A

)ps(j2

}u}{u{A
)]s(H[        (5) 

where, 

=m  number of modes of vibration 

[𝐫𝐤]  Residue matrix for the thk mode (n by n) 

=kp −𝛔𝐤 + 𝐣𝛚𝐤  Pole location for the thk mode 

𝛔𝐤  Damping decay of the thk mode 

𝛚𝐤  Damped natural frequency of the thk mode 

{𝒖𝒌}  Mode shape for the thk mode (n-vector) 

𝐀𝐤  Scaling constant for the thk mode 

t – denotes the transposed vector 
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Figure 2. Transfer Function & FRF of a Single Resonance 

Figure 2 shows a Transfer Function for a single resonance, plotted over half of the s-plane. 

Experimental FRFs 

An FRF is defined as the values of a Transfer Function along the jω-axis in the s-plane 

An experimental FRF can be calculated from acquired experimental data if each excitation force 

and all responses caused by that force are simultaneously acquired. Figure 3 shows the 

magnitude & phase of a typical experimental FRF. 

 
Figure 3. Log Magnitude of an Experimental FRF 
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FRF-Based Curve Fitting 

Curve fitting is commonly done using a least-squared error algorithm which minimizes the 

difference between an analytical FRF model and the experimental data. The outcome of FRF-

based curve fitting is a pole estimate (frequency & damping) and a mode shape (a row or 

column of residue estimates in the residue matrix) for each resonance that is represented in the 

experimental FRF data. 

All forms of the curve fitting model, equations (3), (4) & (5), are used by different curve fitting 

algorithms. If the rational fraction polynomial model (3) is used, its numerator and denominator 

polynomial coefficients are determined during curve fitting. These polynomial coefficients are 

further processed numerically to extract the frequency, damping, & mode shape of each 

resonance represented in the FRFs. 

Modal Frequency & Damping  

Modal frequency & damping are calculated as the roots of the characteristic polynomial. The 

denominators of all three curve fitting models (3), (4), & (5) contain the same characteristic 

polynomial. Therefore, global estimates of modal frequency & damping are normally obtained 

by curve fitting an entire set of FRFs. 

Another property resulting from the common denominator of the FRFs is that the resonance 

peak for each mode will occur at the same frequency in each FRF. Mass loading effects can 

occur when the response sensors add a significant amount of mass relative to the mass of the test 

structure. If the sensors are moved from one point to another during a test, some resonance peaks 

will occur at a different frequency in certain FRFs. When mass loading of this type occurs, a 

local polynomial curve fitter, which estimates frequency, damping & residue for each mode in 

each FRF, will provide better results. 

Modal Residue 

The modal residue, or FRF numerator, is unique for each mode and each FRF. 

A modal residue is the magnitude (or strength) of a mode in an FRF. A row or column of 

residues in the residue matrix defines the mode shape of a mode. 

The relationship between residues and mode shapes is shown in the numerators of the two curve 

fitting models (4) & (5). 
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Figure 4. Curve of an Experimental FRF 

Figure 4 shows an analytical curve fitting function overlaid on the log magnitude of an 

experimental FRF.  

If the partial fraction expansion model (5) is used, the pole (frequency & damping) and residues 

for each mode are explicitly determined during the curve fitting process. To achieve more 

numerical stability, curve fitting can be divided into two curve fitting steps. 

1. Estimate frequency & damping (global or local estimates) 

2. Estimate residues using the frequency & damping estimates 

Transformed Equations of Motion 

Since the differential equations of motion (1) are linear, they can be transformed to the frequency 

domain using the Laplace transform without loss of any information. In the Laplace (complex 

frequency) domain, the equations have the form: 

 

𝐬𝟐[𝐌]{𝐗(𝐬)}+𝐬[𝐂]{𝐗(𝐬)}+[𝐊]{𝐗(𝐬)} = {𝐅(𝐬)} + {𝐈𝐂𝐬}     (7) 

where 

{𝐈𝐂𝐬}  vector of initial conditions (n-vector) 

{𝐗(𝐬)}  Laplace transforms of displacements (n-vector) 

{𝐅(𝐬)}  Laplace transforms of applied forces (n-vector) 

All physical properties of the structure are preserved in the left-hand side of the equations, while 

the applied forces and initial conditions {ICs} are contained on the right-hand side. The initial 

conditions can be treated as a special form of the applied forces, and hence will be dropped from 

consideration without loss of generality in the following development. 

The equations of motion can be further simplified, 

[𝐁(𝐬)]{𝐗(𝐬)} = {𝐅(𝐬)} (n-vector)       (8) 
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where 

[𝐁(𝐬)] = 𝐬𝟐[𝐌]+𝐬[𝐂]+[𝐊]  system matrix      (n by n)     (9) 

Equation (8) shows that any linear dynamic system has three basic parts: applied forces (inputs), 

responses to those forces (outputs), and the dynamic system represented by its system matrix 

[B(s)]. 

Dynamic Model in Modal Coordinates 

The modal parameters of a structure are the solutions to the homogeneous equations of motion. 

That is, when {F(s)} = {0} the solutions to equations (8) are complex valued eigenvalues and 

eigenvectors. The eigenvalues occur in complex conjugate pairs ( )kk pp , . The eigenvalues are the 

solutions (or roots) of the characteristic polynomial, which is derived from the following 

determinant equation, 

𝐝𝐞𝐭[𝐁(𝐬)] = 0          (10) 

The eigenvalues (or poles) of the system are: 

𝐩𝐤 = −𝛔𝐤 + 𝐣𝛚𝐤,  𝐤 = 𝟏, … 𝐦 

𝐩𝐤
∗ = −𝛔𝐤 − 𝐣𝛚𝐤,  𝐤 = 𝟏, … 𝐦 

m = number of modes 

𝐩𝐤 = −𝛔𝐤 + 𝐣𝛚𝐤  pole for the thk  mode 

𝐩𝐤
∗ = −𝛔𝐤 − 𝐣𝛚𝐤  conjugate pole for the thk  mode 

𝛔𝐤  damping of the thk mode 

𝛚𝐤  damped natural frequency of the thk  mode, 𝐤 = 𝟏, … 𝐦 

Each eigenvalue has a corresponding eigenvector, and hence the eigenvectors also occur in 

complex conjugate pairs, ({𝐮𝐤}, {𝐮𝐤
∗ }). 

Each complex eigenvalue (also called a pole) contains the modal frequency and damping. Each 

corresponding complex eigenvector is the mode shape. 

Each eigenvector pair is a solution to the algebraic equations: 

[𝐁(𝐩𝐤)]{𝐮𝐤} = {𝟎}   𝐤 = 𝟏, … 𝐦 (n-vector)      (11) 

[𝐁(𝐩𝐤
∗ )]{𝐮𝐤

∗ } = {𝟎}    𝐤 = 𝟏, … 𝐦 (n-vector)      (12) 

The eigenvectors (or mode shapes), can be assembled into a matrix: 

[𝐔] = [{𝐮1}, {𝐮2}, … , {𝐮𝐦}, {𝐮1
∗}, {𝐮2

∗ }, … , {𝐮𝐦
∗ }]  mode shape matrix (n by 2m) (13) 

This transformation of the equations of motion means that all vibration can be represented in 

terms of modal parameters. 

Fundamental Law of Modal Analysis: All vibration is a summation of mode shapes 
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Using the (n by 2m) mode shape matrix [U], the time domain response of a structure {x(t)} is 

related to its response in modal coordinates {z(t)} by 

{𝐱(𝐭)} = [𝐔]{𝐳(𝐭)} (n-vector)      (14) 

Applying the Laplace transform to equation (14) stated gives, 

{𝐗(𝐬)} = [𝐔]{𝐙(𝐬)} 

where 

{𝐙(𝐬)}  Laplace transform of displacements in modal coordinates (2m-vector) 

Applying this transformation to equations (8) gives: 

[𝐬𝟐[𝐌][𝐔] + 𝐬[𝐂][𝐔] + [𝐊][𝐔]] {𝐙(𝐬)} = {𝐅(𝐬)}  (n-vector)   (15) 

Pre-multiplying equation (15) by the transposed conjugate of the mode shape matrix ([𝐔]𝐭) 

gives: 

[𝐬𝟐[𝐔]𝐭[𝐌][𝐔] + 𝐬[𝐔]𝐭[𝐂][𝐔] + [𝐔]𝐭[𝐊][𝐔]] {𝐙(𝐬)} = [𝐔]𝐭{𝐅(𝐬)} (2m by 2m) (16) 

Three new matrices can now be defined: 

[𝐦] = [𝐔]𝐭[𝐌][𝐔]  modal mass matrix       (2m by 2m)     (17) 

[𝐜] = [𝐔]𝐭[𝐂][𝐔]  modal damping matrix    (2m by 2m)     (18) 

[𝐤] = [𝐔]𝐭[𝐊][𝐔]  modal stiffness matrix     (2m by 2m)    

 (19) 

The equations of motion transformed into modal coordinates now become 

[𝐬𝟐[𝐦] + 𝐬[𝐜] + [𝐤]] {𝐙(𝐬)} = [𝐔]𝐭{𝐅(𝐬)}(2m by 2m)     (20) 

Damping Models 

In equation (1), the damping of the structure was modeled with a linear viscous force term which 

is proportional to surface velocity (1). This is called a non-proportional damping model. Non-

proportional damping is the most commonly-used damping model, unless there is a known 

physical reason for using a different damping model. 

If the structure model has no damping ([C] = 0), then it can be shown that the modal mass & 

stiffness matrices are diagonal matrices and the equations of motion in modal coordinates (20) 

are uncoupled. 

If damping is modeled with a proportional damping matrix, ([𝐂] = 𝛂[𝐌] + 𝛃[𝐊]), where 

&  are proportionality constants, this is called a proportional damping model. With 

proportional damping, the modal mass, damping, & stiffness matrices are diagonal matrices, and 

the equations of motion in modal coordinates (20) are again uncoupled. 
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Lightly Damped Structures 

When they vibrate, all real-world structures have several damping mechanisms which dissipate 

their vibration energy. On earth, the surrounding air always provides one damping mechanism. 

After all excitation forces are removed, all structural vibration will be damped out by the 

damping mechanisms.  

A structure is assumed to be lightly damped if its damping forces are significantly less than its 

internal mass (inertial) and stiffness (restoring) forces. 

If a structure exhibits troublesome resonance-assisted vibration, it is usually because it is lightly 

damped. A common way to define a lightly damped structure is, 

A structure is called lightly damped if its modes have less than 10 percent of critical damping. 

If a structure is lightly damping, then it can be shown that its modal mass, damping, & stiffness 

matrices in equation (20) are approximately diagonal matrices. Furthermore, its mode shapes 

can be shown to be approximately normal (or real valued). In this case, the 2m-equations (20) 

are redundant, and can be replaced to m-equations, one corresponding to each mode. 

The damping cases are summarized as follows. 

Damping Mode Shapes 
Modal 

Matrices 

None Normal 
Diagonal 

(m by m) 

Non-

Proportional 
Complex 

Non-Diagonal 

(2m by 2m) 

Proportional Normal 
Diagonal 

(m by m) 

Light 
Almost 

Normal 

Almost 

Diagonal 

(m by m) 

Table 1. Damping Models 

Scaling Mode Shapes to Unit Modal Masses 

Mode shapes are called "shapes" because they are unique in shape, but not in value.  In other 

words, the mode shape vector }u{ k  for each mode (k) does not have unique values. The "shape" 

of }u{ k  is unique, but its shape values are arbitrary. 

Another way of saying this is that the ratio of any two mode shape components is unique.  A 

mode shape is also called an eigenvector, meaning that its "shape" is unique, but its values are 

arbitrary. Therefore, a mode shape can be arbitrarily scaled using any scale factor. 
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Curve fitting a set of un-calibrated FRFs will yield un-scaled mode shapes, hence they are not 

a modal model and cannot be used with SDM. 

Modal Mass Matrix 

SDM requires a modal model to describe the dynamics of the unmodified structure. In order to 

accurately model the structural dynamics, the mode shapes of the modal model must be scaled to 

preserve the mass, stiffness, & damping properties of the structure. SDM requires mode shapes 

which are scaled so that the modal masses are one or unity.  These are called UMM mode 

shapes. 

When the mass matrix is post-multiplied by the mode shape matrix and pre-multiplied by its 

transpose, the result is the diagonal matrix shown in equation (21).  This is a definition of modal 

mass. 

[𝐔]t[𝐌][𝐔] = [
⋱

𝐦
⋱

] = [

⋱
𝟏

𝐀𝛚

⋱

] (21) 

where 

[𝑴]  mass matrix      (n by n) 

[𝐔] = [{𝐮1}, {𝐮2}, … , {𝐮𝐦}]  mode shape matrix  (n by m) 

[
⋱

𝐦
⋱

] = [

⋱
𝟏

𝐀𝛚

⋱

]  modal mass matrix (m by m) 

The modal mass of each mode (k) is a diagonal element of the modal mass matrix. 

𝐦𝐤 =
𝟏

𝐀𝐤𝛚𝐤
  modal mass  k=1,…, m       (22) 

=kp  −𝛔𝐤 + 𝐣𝛚𝐤  pole location for the thk mode 

𝛚𝐤  damped natural frequency of the thk  mode 

𝐀𝐤  scaling constant for the thk  mode 

Modal Stiffness Matrix 

When the stiffness matrix is post-multiplied by the mode shape matrix and pre-multiplied by its 

transpose, the result is a diagonal matrix, shown in equation (23).  This is a definition of modal 

stiffness. 

[𝐔]t[𝐊][𝐔] = [
⋱

𝐤
⋱

] = [

⋱
𝛔𝟐+𝛚𝟐

𝐀𝛚

⋱

]            (23) 

where 

[𝐊]  stiffness matrix.    (n by n) 
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[
⋱

𝐤
⋱

] = [

⋱
𝛔𝟐+𝛚𝟐

𝐀𝛚

⋱

]  modal stiffness matrix    (m by m) 

The modal stiffness of each mode (k) is a diagonal element of the modal stiffness matrix, 

𝐤𝐤 =
𝛔𝐤

𝟐+𝛚𝐤
𝟐

𝐀𝐤𝛚𝐤
    modal stiffness k=1,…, m     (24) 

where 

𝛔𝐤  modal damping of the thk  mode 

Modal Damping Matrix 

When the damping matrix is post-multiplied by the mode shape matrix and pre-multiplied by its 

transpose, the result is a diagonal matrix, shown in equation (25).  This is a definition of modal 

damping. 

[𝐔]t[𝐂][𝐔] = [
⋱

𝐜
⋱

] = [

⋱
𝟐𝛔

𝐀𝛚

⋱

]       (25) 

where 

[𝐂]  damping matrix (n by n) 

[
⋱

𝐜
⋱

] = [

⋱
𝟐𝛔

𝐀𝛚

⋱

]  modal damping matrix   (m by m) 

The modal damping of each mode (k) is a diagonal element of the modal damping matrix, 

𝐜𝐤 =
𝟐𝛔𝐤

𝐀𝐤𝛚𝐤
 .  modal damping  k=1,…, m     (26) 

Unit Modal Masses 

Each of the modal mass, stiffness, & damping matrix diagonal elements (22), (24), and (26) 

includes a scaling constant (𝐀𝐤).  This constant is necessary because the mode shapes are not 

unique in value, and therefore can be arbitrarily scaled. 

One of the common ways to scale mode shapes is to scale them so that the modal masses are 

“one” or “unity”.  Normally, if a mass matrix [𝐌] were available, the mode vectors would 

simply be scaled such that when the triple product [𝐔]t[𝐌][𝐔] was formed, the resulting modal 

mass matrix would be an identity matrix. 

SDM Dynamic Model 

The local eigenvalue modification process used by SDM requires a modal model of the 

unmodified structure. The modal model consists of the modal frequency, modal damping 

(optional), and mode shape of each mode in the model. 
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The dynamic model for the unmodified structure was given in equation (1). Similarly, the 

dynamic model for the modified structure is written: 

[𝐌 + 𝚫𝐌]{�̈�(𝐭)}+[𝐂 + 𝚫𝐂]{�̇�(𝐭)}+[𝐊 + 𝚫𝐊]{𝐱(𝐭)} = {𝐟(𝐭)} (27) 

where 

[𝚫𝐌]  matrix of mass modifications (n by n) 

[𝚫𝐂]  matrix of damping modifications (n by n) 

[𝚫𝐊]  matrix of stiffness modifications (n by n) 

SDM Equations Using UMM Mode Shapes 

Unit Modal Mass (UMM) scaling is normally done on FEA mode shapes because the mass 

matrix is available for scaling them. However, when EMA mode shapes are extracted from 

experimental FRFs, no mass matrix is available for scaling the mode shapes to yield Unit Modal 

Masses. 

The mode shapes are eigenvectors and hence have no unique values, but if they are scaled so 

that the modal mass matrix is an identity matrix, the equations of motion in modal coordinates 

(20) become: 

[𝐬𝟐[𝐈] + 𝐬[𝟐𝛔] + [𝛀𝟐]] {𝐙(𝐬)} = [𝐔]𝐭{𝐅(𝐬)} (m-vector)    (28) 

where 

[𝐈]  identity modal mass matrix  (m by m)  

[𝟐𝛔]  diagonal modal damping matrix (m by m) 

[𝛀𝟐]  diagonal modal frequency matrix (m by m) 

[𝛀𝟐] = [𝛔𝟐 + 𝛚𝟐] 

In Equation (28), the complete dynamics of the unmodified structure is represented by modal 

frequencies, modal damping, and mode shapes that are scaled to unit modal masses. All mass, 

stiffness, & damping properties of the unmodified structure are preserved in the modal model 

that consists of UMM mode shapes 
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Using the UMM mode shapes, the equations of motion (27) for the modified structure can be 

transformed to modal coordinates, 

[𝐬𝟐[𝐦] + 𝐬[𝐜] + [𝐤]] {𝐙(𝐬)} = [𝐔]𝐭{𝐅(𝐬)} (m-vector)     (29) 

where 

[𝐦] = [𝐈] + [𝐔]𝐭[𝚫𝐌][𝐔] (m by m)      (30) 

[𝐜] = [𝟐𝛔] + [𝐔]𝐭[𝚫𝐂][𝐔] (m by m)      (31) 

[𝐤] = [𝛀𝟐] + [𝐔]𝐭[𝚫𝐊][𝐔] (m by m)      (32) 

For a lightly damped structure, the mode shapes are almost real-valued so the mode shape 

matrix has dimension (n by m). 

The homogeneous form of equation (29) is solved by the SDM method to find the modal 

properties of the modified structure. 

Using the approach of Hallquist, et al [2], an additional transformation of the modification 

matrices [ΔM],[ΔC],[ΔK] is made which results in a reformulation of the eigenvalue problem in 

modification space. For a single modification, this problem becomes a scalar eigenvalue 

problem, which can be solved quickly and efficiently. The drawback to making one modification 

at a time, however, is that if many modifications are required, computation time can become 

significant and errors will accumulate. 

A more practical approach is to solve the homogeneous form of equation (29) directly. This is 

still a relatively small (m by m) eigenvalue problem which can include as many structural 

modifications as desired, but only needs to be solved once. 

Equations (30) to (32) also indicate another advantage of SDM, 

Only the mode shape components where the modification elements are attached to the structure 

model are required. 

This means that only mode shape data for those DOFs where the modification elements are 

attached to the structure is necessary for SDM. 

Scaling Residues to UMM Mode Shapes 

Without a mass matrix, EMA mode shapes can be scaled to Unit Modal Masses by using the 

relationship between residues and mode shapes. 

Residues are related to mode shapes by equating the numerators of curve fitting models (4) and 

(5), 

[𝐫(𝐤)] = 𝐀𝐤{𝐮𝐤}{𝐮𝐤}𝐭 k=1,…, m       (33) 

where 

[𝐫(𝐤)]  residue matrix for the mode (k)  (n by n) 

Residues are the numerators of the Transfer Function matrix in equation (4) when it is written in 
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partial fraction form. For convenience, equation (4) is re-written here, 


= −

−
−

=
m

1k
*

k

*

k )ps(j2

)]k(r[

)ps(j2

)]k(r[
)]s(H[   (34) 

* -denotes the complex conjugate 

Residues have engineering units associated with them and hence have unique values.  FRFs 

have units of (motion/force), and the FRF denominators have units of Hz or (radians/second). 

Therefore, the residues in the numerator have units of (motion/force-seconds). 

Equation (34) can be written for the thj  column (or row) of the residue matrix and for mode (k) 

as, 
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   k=1,…, m   (35) 

 Unique   Variable  Variable 

This relationship states that residues have unique values and preserve the physical properties of 

the structure, but mode shapes do not have unique values and therefore can be scaled in any 

manner. 

The scaling constant kA must be chosen so that equation (35) remains valid. Either the value of

kA can be chosen first, and the mode shapes scaled accordingly, or the mode shapes can be 

scaled first and kA calculated so that equation (35) is still satisfied. 

To obtain UMM mode shapes, simply set the modal mass equal to one and solve equation (22) 

for kA , 

𝐀𝐤 =
𝟏

𝛚𝐤
 k=1,…, m       (36) 

Driving Point FRF Measurement 

Mode shapes scaled to Unit Modal Mass (UMM mode shapes) are obtained from the thj  

column (or row) of the residue matrix by substituting equation (36) into equation (35), 
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  k=1,…, m    (37) 

    UMM 

Mode Shape 

The driving point residue ( )krjj
 (where row index j equals column index j), plays an important 

role in this scaling process.  The driving point residue for each mode (k) is required in equation 

(37) for scaling mode shapes to UMM. Driving point residues are obtained by curve fitting a 

driving point FRF. 

A drive point FRF is any measurement where the excitation force DOF is the same as the 

response DOF. 

Triangular FRF Measurements 

In some cases, it is difficult or even impossible to make a good driving point FRF measurement. 

In those cases, an alternative set of measurements can be made from which to create UMM mode 

shapes.  From equation (37) the following equation can be written, 

)(

)()(

krA

krkr
u

pqk

jqjp

jk =    k=1,…, m    (38) 

Equation (38) can be substituted for jku  in equation (37) to calculate UMM mode shapes. To 

calculate a starting component jku , three FRFs are required ( 𝐅𝐑𝐅𝐣𝐩 , 𝐅𝐑𝐅𝐣𝐪 , 𝐅𝐑𝐅𝐩𝐪 ). DOF(j) is 

the (fixed) reference for the thj  column (or row) of FRF measurements, so the two 

measurements 𝐅𝐑𝐅𝐣𝐩 and 𝐅𝐑𝐅𝐣𝐩 would normally be made.  In addition, one extra measurement 

𝐅𝐑𝐅𝐩𝐪 is also required in order to obtain the three residues required by equation (38).  Since the 

FRFs (𝐅𝐑𝐅𝐣𝐩 , 𝐅𝐑𝐅𝐣𝐪 , 𝐅𝐑𝐅𝐩𝐪) form a triangle of off-diagonal FRFs in the FRF matrix, they are 

called a triangular FRF measurement. Equation (38) leads to the following conclusion, 

A set of triangular FRF measurements which do not include driving point FRFs can be curve fit 

and their residues used to create UMM mode shapes. 

Integrating Residues to Displacement Units 

Vibration measurements are commonly made using either accelerometers that measure 

acceleration responses or vibrometers that measure velocity responses.  Excitation forces are 

typically measured with a load cell.  Therefore, FRFs calculated for experimental data will have 

units of either (acceleration/force) or (velocity/force). 
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Modal residues always have the units of the FRF multiplied by (radians/second). 

• Residues extracted from FRFs with units of (acceleration/force) will have units of 

(acceleration/force-seconds) 

• Residues extracted from FRFs with units of (velocity/force) will have units of 

(velocity/force-seconds) 

• Residues extracted from FRFs with units of (displacement/force) will have units of 

(displacement/force-seconds) 

Since the modal mass, stiffness, & damping equations (21), (23), and (25) assume units of 

(displacement/force), residues with units of (acceleration/force-seconds) or (velocity/force-

seconds) must be "integrated" to units of (displacement/force-seconds) units before scaling 

them to UMM mode shapes.  

Integration of a time domain function has an equivalent operation in the frequency domain.  

Integration of a Transfer Function is done by dividing it by the Laplace variable(s), 

2

av
d

s

)]s(H[

s

)]s(H[
)]s(H[ ==        (39) 

where 

)]s(H[ d  transfer matrix in (displacement/force) units 

)]s(H[ v  transfer matrix in (velocity/force) units 

)]s(H[ a  transfer matrix in (acceleration/force) units 

Since residues are the result of the partial fraction expansion form of an FRF, residues can be 

"integrated" directly using the formula, 

2

k

a

k

v
d

)p(

)]k(r[

p

)]k(r[
)]k(r[ ==  k=1,…, m     (40)  

where, 

)]k(r[ d  residue matrix in (displacement/force) units 

)]k(r[ v  residue matrix in (velocity/force) units 

)]k(r[ a  residue matrix in (acceleration/force) units 

=kp  −𝛔𝐤 + 𝐣𝛚𝐤  pole location for the thk mode 

If light damping is assumed and the mode shapes are real-valued, equation (40) can be 

simplified to, 

)]k(r[)F()]k(r[F)]k(r[ a

2

kvkd ==             (41)  
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where 

)( 22

kk

k
kF





+
  k=1,…, m       (42)  

Equations (41) and (42) are summarized in the following table 

To change Transfer Function units Multiple Residues 

By From To 

FORCE
ONACCELERATI

 FORCE

NTDISPLACEME
 2F  

FORCE

VELOCITY
 FORCE

NTDISPLACEME
 F  

Table 2. Residue Scale Factors 

where   
)(

F
22 



+
    (seconds) 

Effective Mass 

A useful question to ask is, 

“At one of its DOFs, what is the effective mass of a structure at one of its resonant 

frequencies?” 

Another way to ask the question is, 

“At one of its DOFs, if a structure were treated like an SDOF mass-spring-damper, what is its 

effective mass, effective stiffness & effective damping?” 

The answer to those questions follows from a further use of the modal mass, stiffness, & 

damping equations (21), (23), and (25) and the definition UMM mode shapes. 

It has already been shown that residues with units of (displacement/force-seconds) can be 

scaled to UMM mode shapes.  One further assumption is necessary to define the effective mass 

at a DOF. 
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Diagonal Mass Matrix 

If the mass matrix ]M[  is assumed to be a diagonal matrix, then pre-multiplying & post-

multiplying it by UMM mode shapes changes equation (21) to, 

( ) 1umass
2

jk

n

1j

j =
=

 k=1,…, m       (43) 

where 

𝐦𝐚𝐬𝐬𝐣  jth diagonal element of the mass matrix 

𝐮𝐣𝐤  jth component of the UMM mode shape (k) 

If the structure is viewed as a mass-spring-damper at DOF(j), the effective mass at the frequency 

of mode (k) at DOF(j) is determined from equation (43) as, 

( )2
1

jk

j
u

masseffective =   j=1,…, n       (44) 

If each DOF(j) is treated a driving point, equation (37) can be used to write the mode shape 

component 
jku  in terms of the modal frequency k and driving point residue )k(rjj

, 

)k(ru jjkjk =  j=1,…, n       (45) 

Substituting equation (45) into equation (44) gives another expression for the effective mass at 

the frequency of mode (k), 

𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐦𝐚𝐬𝐬𝐣 =
𝟏

𝛚𝐤𝐫𝐣𝐣(𝐤)
 j=1,…, n       (46) 

Checking the Engineering Units  

Assuming that the driving point residue )k(rjj
 has units of (displacement/force-seconds) as 

discussed earlier, and the modal frequency k  has units of (radians/second), then the effective 

mass would have units of (force-sec2/displacement), which are units of mass. 

Using the effective mass, the effective stiffness & damping of the structure can be calculated 

using equations (29) and (31). 
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Effective Mass Example 

Suppose that we have the following data for a single mode of vibration, 

 Frequency = 10.0 Hz. 

Damping = 1.0 % 

Residue Vector =

















+

+

−

5.0

0.2

1.0

 

Also, suppose that the FRF measurements that were curve fit to obtain this data have units of 

(Gs/Lbf).  Also assume that the driving point is at the second DOF of the residue vector, and 

therefore driving point residue = 2.0. 

Converting the frequency & damping into units of radians/second, 

Frequency = 62.83 Rad/Sec 

Damping = 0.628 Rad/Sec 

The residues always carry the units of the FRF measurement multiplied by (radians/second).  

For this example, the units of the residues are, 

Residue Units ➔ Gs/(Lbf-Sec) ➔ 386.4 Inches/(Lbf-Sec3) 

In these units, the residues become, 

Residue Vector =

















+

+

−

2.931

8.727

64.83

  Inches/(Lbf-Sec3) 

Since the modal mass, stiffness, & damping equations (21), (23), and (25) assume units of 

(displacement/force), the above residues with units of (acceleration/force) must be converted 

to (displacement/force) units. This is done by using the appropriate scale factor from Table 2.  

For this example: 

000253.0
83.62

1
F

2

2 =







  (Seconds2) 

Multiplying the residues by 
2F gives, 

Residue Vector =

















+

+

−

0.0488

0.1955

0.00977

 Inches/(Lbf-Sec) 

Using equation (37) the residue mode shape must be multiplied by the following scale factor to 

obtain a UMM mode shape, 
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927.17
0.1955

83.62

r
SF

jj

=
+

=


=  

Therefore, 

UMM Mode Shape =

















+

+

−

875.0

505.3

175.0

 Inches/(Lbf-Sec) 

Using equation (44), the effective mass at the driving point is, 

𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐦𝐚𝐬𝐬 =
𝟏

(𝐮𝟐)𝟐 =
𝟏

(𝟑.𝟓𝟎𝟓)𝟐 = 𝟎. 𝟎𝟖𝟏𝟒   Lbf-sec2/in. 

Or, using equation (46), the effective mass at the driving point is, 

𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐦𝐚𝐬𝐬 =
𝟏

𝛚 𝐫𝟐𝟐
=

𝟏

(𝟔𝟐.𝟖𝟑)(𝟎.𝟏𝟗𝟓𝟓)
= 𝟎. 𝟎𝟖𝟏𝟒  Lbf-sec2/in. 

SDM Example 

In this example, SDM will be used to model the attachment of a RIB stiffener to an aluminum 

plate.  The new mode shapes obtained from SDM will be compared with the FEA mode shapes 

of the plate with the RIB attached, and with the EMA mode shapes obtained from an impact test 

of the actual plate with the RIB attached. Mode shapes will be compared in three cases. 

1. EMA versus FEA mode shapes of the plate without the RIB 

2. SDM versus FEA mode shapes of the plate with the RIB attached 

3. SDM versus EMA mode shapes of the plate with the RIB attached 

The plate and RIB are shown in Figure 5.  The dimensions of the plate are 20 inches (508 mm) 

by 25 inches (635 mm) by 3/8 inches (9.525 mm) thick. The dimensions of the RIB are 3 inches 

(76.2 mm) by 25 inches (635 mm) by 3/8 inches (9.525 mm) thick. 

Two roving impact modal tests were conducted on the plate, one before and one after the RIB 

stiffener was attached to the plate.  FRFs were calculated from the impact force and the 

acceleration response only in the vertical (Z-axis) direction. 

 



Modal Modeling and Structural Dynamics Modification      February 3, 2020 

Page 31 of 52 

 
Figure 5A. Aluminum Plate 

Figure 5B. RIB and Cap Screws 

 
Figure 5C. Plate and RIB Attached Figure 6. FEA Springs Modeling the Cap Screws

Cap Screw Stiffnesses 

The RIB stiffener was attached to the plate with five cap screws, shown in Figure 5B. When the 

RIB is attached to the plate, translational & torsional forces are applied between the two 

substructures along the length of the plate centerline where they are attached together. Both 

translational & torsional stiffness forces must be modeled in order to represent the real-world 

plate with the RIB stiffener attached. 

The joint stiffness was modeled using six-DOF springs located at the five cap screw locations, 

as shown in Figure 6. Each six-DOF FEA spring model contains three translational DOFs and 

three rotational DOFs. The six-DOF FEA springs were given large stiffness values to model a 

tight fastening of RIB to the plate using the cap screws. 

• Translational stiffness: 1 x E6 lbs/in (1.75E+05 N/mm) 

• Torsional stiffness: 1 x E6 in-lbs/degree (1.75E+05 mm-N/degree) 

EMA Mode Shapes of the Plate 

FRFs were calculated from data acquired while impacting the plate in the vertical direction, at 

each of the 30 points shown in Figure 7. The plate was supported on bubble wrap laying on top 

of a table as shown in Figure 5. A fixed reference accelerometer was attached to the plate. (The 

location of the reference accelerometer is arbitrary.) 
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The EMA modal parameters were estimated by curve fitting the 30 FRFs calculated from the 

roving impact test data. EMA mode shapes for 14 modes were obtained by curve fitting the 

FRFs, each mode shape having 30 DOFs (1Z through 30Z).  A curve fit on one of the FRFs is 

shown in Figure 4.

 
Figure 7. Impact Test Points

 

Figure 8. Curve of an Experimental FRF 

FEA Mode Shapes of the Plate 

An FEA model of the plate was constructed using 80 FEA plate (membrane) elements. The 

following properties of the aluminum material in the plate were used, 

1. Young’s modulus of elasticity: 1E7 lbf/in^2 (6.895E4 N/mm^2) 

2. Density: 0.101 lbm/in^3 (2.796E-6 kg/mm^3) 

3. Poisson’s Ratio: 0.33. 

4. Plate thickness: 0.375 in (9.525 mm)  

The FEA model shown in Figure 9 has 99 points (or nodes). The eigen-solution included the first 

20 FEA modes, 6 rigid-body mode shapes and 14 flexible-body mode shapes. Each FEA mode 

shape has 594 DOFs (3 translational & 3 rotational DOFS at each point). The FEA mode shapes 

were scaled to UMM mode shapes, hence they constitute a modal model of the plate. 

 
Figure 9. FEA Model with FEA Quads 
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Mode Shape Comparison 

The Modal Assurance Criterion (MAC) values between each EMA mode shape and each 

flexible-body FEA mode shape are displayed in the bar chart in Figure 9. 

MAC is a measure of the co-linearity of two mode shapes. The following rule-of-thumb is 

commonly used with MAC 

• MAC = 1.00 ➔ two shapes are the same (they lie on the same straight line) 

• MAC >= 0.90 ➔ two shapes are similar 

• MAC <= 0.90 ➔ two shapes are different 

The diagonal MAC bars in Figure 9 indicate that each flexible-body EMA mode shape closely 

matched one-for-one with the each flexible-body FEA mode shape. The worst-case pair of 

matching mode shapes is the first pair with MAC = 0.97. 

 
Figure 10. MAC Between FEA & EMA Mode Shapes 

Modal Frequency Comparison 

The modal frequencies of the matching FEA & EMA mode pairs are listed in Table 3. Each 

EMA modal frequency is higher than the frequency of its corresponding FEA mode. The pair 

with the highest difference is different by 100 Hz. 
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Shape 

Pair 

FEA 

Frequency 

(Hz) 

EMA 

Frequency 

(Hz) 

EMA 

Damping 

(Hz) 

MAC 

1 91.4 102 0.031 0.968 

2 115 129 0.250 0.991 

3 190 208 0.458 0.990 

4 217 242 0.107 0.993 

5 251 284 0.106 0.984 

6 332 367 0.642 0.985 

7 412 469 0.159 0.975 

8 424 477 0.339 0.985 

9 496 567 3.130 0.991 

10 564 643 0.936 0.991 

11 626 714 3.680 0.984 

12 654 742 0.923 0.987 

13 689 802 0.443 0.983 

14 757 859 3.090 0.984 
Table 3. FEA versus EMA Modes-Plate without RIB 

The frequency differences indicate that the stiffness of the actual aluminum plate is greater than 

the stiffness of the FEA model. These frequency differences could be reduced by increasing the 

modulus of elasticity or increasing the thickness of the FEA plate elements. However, since the 

EMA and FEA modes shapes are closely-matched, the EMA frequency & damping can be 

combined with the FEA mode shapes to provide a more accurate modal model of the plate. 

Hybrid Modal Model 

In most cases, EMA mode shapes will not have as many DOFs in them as FEA mode shapes. But 

in most all cases, EMA mode shapes with have more accurate modal frequencies than FEA mode 

shapes. Also, EMA mode shapes always have non-zero modal damping, whereas FEA mode 

shapes typically have no damping. 

If a pair of EMA & FEA mode shapes is highly correlated (their MAC value is close to 1.0), a 

hybrid mode shape can be created by replacing the frequency & damping of each FEA mode 

shape with the frequency & damping of its closely-matching EMA mode shape. 

In a Hybrid mode shape, the frequency & damping of each FEA mode shape is replaced with the 

frequency & damping of its closely-matching EMA mode shape. 

In Figure 10 and Table 3, each FEA mode shape has a high MAC value with a corresponding 

EMA mode shape. Therefore, a hybrid modal model of the plate can be created by replacing the 

modal frequency & damping of each FEA mode shape with the modal frequency & damping of 

its closely-matching EMA mode shape. 
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A hybrid modal model has several advantages for modeling the dynamics of an unmodified 

structure with SDM, 

• Its modal frequencies & damping are more realistic 

• It can have DOFs at locations where EMA data was not acquired 

• Its mode shapes can include rotational DOFs which are not typically included in EMA 

mode shapes 

• FEA mode shapes are typically scaled to UMM mode shapes 

 
Figure 11. FEA RIB Model 

RIB FEA Model 

An FEA model of the RIB in a free-free condition (no fixed boundaries) was created using 30 

FEA Quad Plate elements. The FEA RIB model is shown in Figure 11. 

The frequencies of the first 16 FEA modes of the RIB are listed in Table 4. Because it has free-

free boundary conditions, the first six modes of the FEA model are rigid-body mode shapes with 

zero “0” frequency.  These FEA mode shapes are UMM mode shapes, so they constitute a modal 

model of the RIB. 
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Shape 

Pair 

 

FEA Frequency 

(Hz) 

EMA Frequency 

(Hz) 

EMA Damping 

(Hz) 

1 0.0   

2 0.0   

3 0.0   

4 0.0   

5 0.0   

6 0.0   

7 117.0 121.0 0.78 

8 315.0 330.0 0.72 

9 521.0 582.0 0.89 

10 607.0 646.0 2.49 

11 987.0 1.07E+03 3.86 

12 1.07E+03 1.18E+03 1.24 

13 1.45E+03 1.60E+03 8.72 

14 1.67E+03 1.79E+03 2.55 

15 1.99E+03 2.24E+03 3.92 

16 2.32E+03 2.44E+03 2.97 
Table 4. FEA vs. EMA RIB Frequencies 

RIB Impact Test 

The RIB was impact tested to obtain its EMA modal frequencies & damping, but not its mode 

shapes. The RIB was only impacted once, and the resulting FRF was curve fit to obtain its EMA 

modal frequencies & damping. The curve fit of the FRF measurement is shown in Figure 12, and 

the resulting EMA frequencies & damping are listed in Table 4. 

 
Figure 12. Curve Fit of a RIB FRF. 
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Hybrid Modal Model of the RIB 

We have already seen that pairs of the EMA & FEA mode shapes of the plate are strongly 

correlated based upon their high MAC values. The only significant difference between the EMA 

& FEA mode shapes was their modal frequencies, and each EMA mode also has modal damping 

while the FEA mode shapes do not. 

Before it is attached to the plate, the RIB is a free-body in space. It is essential that the rigid-

body modes of the RIB be included in its modal model to correctly model its free-body 

dynamics. Rigid-body modes are typically not measured experimentally but they are including in 

the FEA mode shapes. 

A RIB hybrid modal model was created by replacing the frequency & damping of each FEA 

mode shape with the EMA modal frequency & damping from its closely-matching EMA mode 

shape. The six rigid-body FEA mode shapes were also retained in the hybrid modal model to 

define the free-body dynamics of the RIB. 

Substructure Modal Model 

In order to model the RIB attached to the plate using SDM, the Hybrid modal model of the RIB 

was added to the Hybrid modal model of the plate to create a modal model for the entire 

unmodified structure. This is called a substructure modal model. 

Figure 13 shows how the points on the RIB are numbered differently than the points on the 

plate. This ensures that the DOFs of the RIB modes are uniquely numbered compared to the 

DOFs of the plate modes. 

Block Diagonal Format 

When the modal model of the RIB is added to the modal model of the plate, the unique 

numbering of the points on the plate and RIB creates a modal model in block diagonal format. 

In block diagonal format, the DOFs of the RIB mode shapes are zero valued for DOFs on the 

plate, and likewise the DOFs of the plate mode shapes are zero valued for the DOFs of the RIB. 

The plate modal model contains 14 modes with 594 DOFs (297 translational and 297 rotational 

DOFs) in each mode shape. The RIB modal model contains 16 modes with 264 DOFs (132 

translational and 132 rotational DOFs) in each mode shape. Therefore, the substructure modal 

model contains 30 modes and 858 DOFs (429 translational and 429 rotational DOFs) in each 

mode shape. 

Calculating New Modes with SDM 

The five FEA springs shown in Figure 13 were used by SDM to model the five cap screws that 

attach the RIB to the plate. These springs were used together with the substructure modal model 

for the unmodified structure as inputs to SDM. 

Even though the mode shapes in the substructure modal model have 858 DOFs in them, only the 

mode shape DOFs at the attachment points of the FEA springs are used by SDM to calculate the 

new frequencies & damping of the plate with the RIB attached.  Following that, all 858 DOFs of 
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the unmodified mode shapes are used to calculate the new mode shapes of the modified 

structure. 

 
Figure 13. Point numbers of the Plate and RIB 

SDM versus FEA Modes-Plate and RIB 

An FEA model consisting of the 80 quad plate elements of the plate, 30 quad plate elements of 

the RIB, and the 5 springs was also solved using an FEA eigen-solver.  The SDM & FEA results 

are compared in Table 5. 

 

Shape 

Pair 

 

FEA 

Frequency 

(Hz) 

SDM 

Frequency 

(Hz) 

SDM 

Damping 

(Hz) 

MAC 

1 96.0 108.2 0.035 1.00 

2 170.5 187.6 0.369 0.99 

3 222.6 253.3 0.118 0.98 

4 232.7 311.5 0.293 0.92 

5 245.1 351.7 0.104 0.98 

6 415.0 479.2 0.171 0.98 

7 423.0 521.3 0.713 0.91 

8 459.1 537.4 2.770 0.95 

9 530.7 619.1 0.863 0.91 

10 596.0 1412.0 3.185 0.63 
Table 5. SDM Modes versus FEA Modes-Plate with RIB 

The first nine pairs of mode shapes in Table 5 have MAC values greater than 0.90, indicating a 

strong correlation between those SDM and FEA mode shapes. The FEA modal frequencies are 

lower than the SDM frequencies for those first nine mode shape pairs. 
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It will be shown later in FEA Model Updating how SDM can be used to find more realistic 

material properties for the FEA model so that its modal frequencies more closely match the 

EMA frequencies. 

SDM Mode Shapes 

Figure 14 is a display of the first ten SDM mode shapes.  Five of the ten mode shapes clearly 

reflect the torsional coupling between the RIB and the plate.  All ten mode shapes show the 

intended effect of the RIB stiffener on the plate. 

All bending of the plate along its centerline has been eliminated by attaching the RIB to it. 

Both the RIB and plate are flexing together in unison, both being influenced by the torsional 

stiffness created by the 6-DOF springs that modeled the cap screws. 

Attaching the RIB to the plate has created new modes with mode shapes that did not exist before 

the modification. This confirms the law stated earlier. 

Fundamental Law of Modal Analysis: All vibration is a summation of mode shapes 

 

SDM Mode Shape 1 

SDM Mode Shape 3 

SDM Mode Shape 2 

SDM Mode Shape 4 
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SDM Mode Shape 5 SDM Mode Shape 6 

SDM Mode Shape 7 

SDM Mode Shape 9 

SDM Mode Shape 8 

SDM Mode Shape 10 

Figure 14. SDM Mode Shapes 
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SDM versus EMA Modes-Plate and RIB 

To compare the SDM mode shapes with EMA mode shapes, the plate with the RIB attached was 

impact tested using a roving impact hammer. The plate was impacted at 24 points on the plate in 

the (vertical) Z-direction, as shown in Figure 15. This provided enough EMA mode shape data 

for comparison with the SDM mode shapes. 

A driving point FRF measurement is not required since the EMA mode shapes do not require 

UMM scaling to compare them with SDM mode shapes using MAC. 

The curve fit of a typical FRF from the impact test is shown in Figure 16. The 24 FRFs were 

curve fit to extract the EMA mode shapes for the modified plate. 

 

 
Figure 15. Impact Points on Plate with RIB 

 
Figure 16. Curve Fit of an FRF from the Plate with RIB 
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Shape 

Pair 

EMA 

Frequency 

(Hz) 

EMA 

Damping 

(Hz) 

SDM 

Frequency 

(Hz) 

SDM 

Damping 

(Hz) 

MAC 

1 103.8 0.142 108.2 0.034 0.99 

2 188.5 0.377 187.6 0.369 0.99 

3 242.5 0.254 253.3 0.118 0.99 

4 277.8 0.941 311.5 0.293 0.98 

5 259.8 0.254 351.7 0.104 0.97 

6 468.6 0.710 479.2 0.171 0.98 

7 504.1 6.202 521.3 0.713 0.97 

8 572.5 1.877 537.4 2.770 0.97 

9 620.3 0.818 619.1 0.865 0.85 

10 803.3 6.070 801.1 0.544 0.86 
Table 6. EMA versus SDM modes for the Plate and RIB 

Conclusions 

In Table 6, the modal frequencies of the first three SDM modes agree closely with the 

frequencies of the first three EMA modes. In Table 6, the first eight SDM mode shapes agree 

closely with the first eight EMA mode shapes, all having MAC values close to 1.0. 

The close agreement between the first eight mode shapes from all three cases; SDM, FEA, & 

EMA, verify that the joint stiffness provided by the five cap screws was correctly modeled in 

SDM using 6-DOF springs and mode shapes with rotational DOFs in them. This example has 

demonstrated that even with the use of a truncated modal model containing relatively few mode 

shapes, SDM provides realistic and useful results. 

Several options could be explored to obtain closer agreement between the SDM, FEA, & EMA 

mode shapes, 

• Add more FEA springs between the RIB and the plate to model the stiffness forces 

between the two substructures 

• Use more FEA quad plate elements for the plate and RIB. Increasing the mesh of nodes 

for the plate elements usually provides more accurate FEA mode shapes. 

• Include more modes in the modal model of the unmodified plate and RIB.  Extra 

modes will provide a more complete dynamic model of the two substructures as input 

to SDM. 

Modeling a Tuned Vibration Absorber with SDM 

Another use of SDM is to model the addition of tuned mass-spring-damper vibration absorbers to 

a structure. A tuned vibration absorber is designed to absorb some of the vibration energy in the 

structure so that one of its modes of vibration will absorb less energy and hence the structure will 

vibrate with less overall amplitude. 
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A tuned absorber is used to suppress resonant vibration in a structure. The primary effect of 

adding a tuned absorber is to replace one of its resonances with two lower amplitude 

resonances. 

The mass and stiffness of the tuned absorber is chosen so that its natural frequency is “close to” 

the resonant frequency of a structural resonance to be suppressed. Ideally, the absorber should be 

attached to the structure at a point and in a direction where the magnitude of the resonance is 

large, near an anti-node of its mode shape. The absorber will have no effect if attached at a node 

of the mode shape, where its magnitude is zero. 

SDM models the attachment of a tuned absorber to a structure by solving a sub-structuring 

problem like the one in the previous plate and RIB example.  A tuned absorber is modeled by 

attaching an FEA mass to the structure using an FEA spring & FEA damper. SDM solves for the 

new modes of the structure with the tuned vibration absorber attached. 

To begin the design, a mass must be chosen for the tuned absorber. The following rule should be 

used in choosing an absorber mass. 

Rule of Thumb: The mass of a tuned absorber should not exceed 10% of the mass of the 

structure. 

After the mass has been chosen, the frequency of the structural mode to be suppressed together 

with the mass of the absorber will determine the stiffness of the spring required to attach the 

absorber to the structure.  These three values are related to one another by the formula, 

𝐤 = 𝐦 𝛚𝟐           (47) 

where 

𝐦  tuned absorber mass 

𝛚  frequency of the structural mode to be suppressed 

𝐤  tuned absorber stiffness 

Adding a damper is optional. If a damper is added between the absorber mass and the structure, 

its damping value must also be chosen.  A realistic damping value of a few percent of critical 

damping is calculated using the following formulas. 

𝐤 = 𝐦 (𝛚𝟐 + 𝛔𝟐)          (48) 

where 

2%1−
=


   damping decay constant 

%   percent of critical damping 

The mode shape of the unattached tuned absorber is simply the UMM rigid-body mode shape of 

the mass substructure in free-space.  In order to use SDM to model a tuned absorber, two more 

steps are necessary, 
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1. The free-free mode shape of the tuned absorber must be added in block diagonal 

format to the mode shapes of the unmodified structure. The block diagonal format was 

explained in the previous plate and RIB example 

2. The attachment DOF (point & direction) of the tuned absorber must be defined. A 

geometric model of the structure is usually required for this 

Adding a Tuned Absorber to the Plate and RIB 

SDM will be used to model the attachment of a tuned vibration absorber to one corner of the flat 

aluminum plate used in the previous example. The absorber will be designed to suppress the 

amplitude of the high-Q resonance at 108 Hz, shown in the blue FRF magnitude plot in Figure 

17. 

The plate and RIB weighs about 21.3 lbm (9.7 kg). For this example, the absorber weight is 

chosen as 0.5 lbm (0.23 kg). In order to absorb energy from the plate and RIB at 108 Hz, the 

attachment spring stiffness must be chosen so that the absorber will resonate at 108 Hz. 

The absorber parameters are, 

Mass: 0.5 lbm (0.23 kg) 

Stiffness: 586.6 lbf/in (104.8 N/mm) 

Damping: 0.5% 

Only the modal model data of the unmodified plate and RIB at DOF 1Z is required. Since the 

mass will be attached to the plate and RIB as a substructure, the mode shape of the free-body 

mass is added to the mode shapes of the unmodified plate and RIB in block diagonal format, 

explained in the previous example. 

To model the tuned absorber, the modal model for the unmodified plate and RIB substructure 

together with a modal model and the spring & damper of the absorber are used as inputs to SDM. 

SDM then solves for the new modes of the plate and RIB with the absorber mass attached by the 

spring & damper to one corner of the plate (DOF 1Z). 

 
Figure 17. Synthesized FRFs (1Z:1Z) Before and After Absorber 
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Figure 17 shows the log magnitudes of two overlaid driving point FRFs of the plate and RIB at 

DOF 1Z, before (blue) and after (red) the tuned absorber was attached to the plate.  These 

overlaid FRFs clearly show that the resonant frequency at 108 Hz has been removed from the 

Plate and RIB and replaced with two new resonances, one at 84 Hz and the other at 128 Hz. The 

two new modes also have lower Q’s (less amplitude) than the Q of the mode they replaced. 

The MAC values in Table 7 show that the two new mode shapes are essentially the same as the 

mode shape of the original 108 Hz mode. Notice also that the tuned absorber had very little effect 

on the other resonances of the structure. 

 

Shape 

Pair 

Before TA 

Frequency 

(Hz) 

Before TA 

Damping 

(Hz) 

After TA 

Frequency 

(Hz) 

After TA 

Damping 

(Hz) 

MAC 

1 108.2 0.0345 84.3 0.149 0.96 

2 108.2 0.0345 127.6 0.333 0.93 

3 187.6 0.369 190.4 0.422 0.99 

4 253.3 0.118 258.7 0.250 0.98 

5 311.5 0.293 317.9 0.488 0.98 

6 351.7 0.104 354.4 0.217 0.99 

7 479.2 0.171 480.7 0.239 1.00 

8 521.3 0.713 524.9 0.924 0.97 

9 537.4 2.77 538.7 2.808 0.98 

10 619.1 0.863 622.1 1.055 1.00 

11 801.1 0.544 801.1 0.544 1.00 
Table 7. Modes Before and After Tuned Absorber Attached at 1Z 

 
Figure 18A. Absorber In-Phase with the 84 Hz Mode 
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Figure 18B. Absorber Out-Of-Phase with the 128 Hz Mode 

Figure 18 shows how the tuned absorber mass moves with respect to the plate. In Figure 18A the 

tuned absorber is moving in-phase with the plate below it.  In Figure 18B it is moving out-of-

phase with the plate below it. (An animated picture shows this relative motion more clearly.) 

Modal Sensitivity Analysis 

It is well-known that the modal properties of a structure are very sensitive to changes in its 

physical properties. 

Because of its computational speed, SDM can be used to quickly solve for the modal parameters 

of thousands of potential modifications to a structure. The calculation and ordering of multiple 

SDM solutions from best to worst is called Modal Sensitivity Analysis. 

EMA modes of the Plate and RIB 

In a previous example, SDM was used to model the attachment of a RIB stiffener to the 

aluminum plate shown in Figures 5A, 5B, & 5C. To validate the SDM mode shapes using 

experimental data, the plate with the RIB attached was tested with a roving impact hammer test. 

The plate was impacted at 24 points on the plate in the (vertical) Z-direction to gather enough 

data to uniquely define the EMA mode shapes for comparison with the SDM mode shapes. In 

Table 8, the first eight EMA & SDM mode shape pairs have MAC values close to 1.0, indicating 

that they are closely matched. But the EMA & SDM modal frequencies are all different from 

one another. 
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Shape 

Pair 

EMA 

Frequency 

(Hz) 

EMA 

Damping 

(Hz) 

SDM 

Frequency 

(Hz) 

SDM 

Damping 

(Hz) 

MAC 

1 103.8 0.144 108.2 0.0345 1.00 

2 188.5 0.360 187.6 0.369 0.99 

3 242.5 0.262 253.3 0.118 0.99 

4 259.7 0.378 311.5 0.293 0.98 

5 277.4 1.164 351.7 0.104 0.97 

6 468.6 0.760 479.2 0.171 0.98 

7 503.6 6.035 521.3 0.713 0.97 

8 572.6 4.953 537.4 2.77 0.98 

9 618.8 1.828 619.1 0.863 0.87 

10 657.5 6.541 801.1 0.544 0.95 
Table 8. EMA versus SDM modes for the Plate with RIB 

Using SDM to Explore Joint Stiffnesses 

The first mode of the plate and RIB involves twisting of both the plate and RIB, as shown in 

Figure 14. The mode shape is influenced by both the translational & rotational stiffness of the 

spring stiffeners used to attach the RIB to the plate. 

Using the Hybrid modal model containing the mode shapes of the plate without the RIB 

attached, SDM can be used to quickly calculate the modes the plate and RIB using many 

different translational & rotational stiffnesses of the springs used to attach the RIB to the plate. 

These solutions are then ordered from best to worst. Modal Sensitivity Analysis can be 

performed by calculating and ordering multiple SDM solutions. 

Current vs. Target Frequency 

A Modal Sensitivity window is setup in Figure 19A to perform sensitivity calculations on the 

plate and RIB. The window contains two spreadsheets. The frequencies of the 30 modes of the 

unmodified plate and RIB substructures are listed in the Current Frequency column of the 

upper spreadsheet. This modal model contains 14 mode shapes of the plate without the RIB 

attached and 16 free-body mode shapes of the RIB. The mode shapes are sorted according to 

frequency, beginning with the rigid-body mode shapes of the RIB. 

The EMA modal frequencies of the plate and RIB are listed in the Target Frequency column in 

the upper spreadsheet. These frequencies are used for ranking the SDM solutions from best to 

worst. 

Ten Shape Pairs have been selected in the upper spreadsheet. The Selected Pairs are used to 

order the solutions from best to worst. The best solution is the one which minimizes the 

difference between each Solution Frequency and each Target Frequency. 
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Solution Space 

In Table 8, the first EMA mode shape (at 103.8 Hz) has a lower frequency than the first SDM 

mode shape (at 108.2 Hz). Therefore, the best Modal Sensitivity solution should require less 

stiffnesses than the stiffnesses (1,000,000) used to attach the RIB to the plate. 

The lower spreadsheet defines ranges of stiffness values for the translational & rotational 

stiffnesses of the five FEA springs.  Each stiffness has a range of 50 Steps (or values) in its 

solution space. Each SDM solution will use a stiffness value from the Minimum Property 

(1000) to the Maximum Property (2,000,000) of each stiffener. The solution space has 50 steps 

x 50 steps = 2500 stiffness values in it. SDM will solve for new modes using all combinations of 

stiffness values in the solution space of the two stiffeners. 

 
Figure 19A. Modal Sensitivity Setup for 2500 Solutions 
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Figure 19B. Best Solution with Eight Shape Pairs Selected 

Figure 19B shows the Modal Sensitivity window after 2500 solutions have been calculated and 

ordered from best to worst. The modal frequencies of the best solution are displayed in the 

Solution Frequency column of the upper spreadsheet. The damping values are displayed in the 

Solution Damping column. 

The stiffness values used to calculate the best solution are displayed in the lower spreadsheet. 

The translational stiffness used to calculate the best solution is 4.18 E04 lbf/in.  The rotational 

stiffness used to calculate the best solution is 2.05 E05 (lbf-in)/deg. Much less translational & 

rotational stiffness of the five spring stiffeners was required to closely match the frequencies of 

the first eight EMA modes of the plate and RIB. 

FEA Modal Updating 

Because of its computational speed, SDM can be used to quickly evaluate thousands of 

modifications to the physical properties of an FEA model. In Table 3 their MAC values indicate 

that each FEA mode shape of the plate closely matches with an EMA mode shape, but each FEA 

modal frequency is less than the EMA frequency of its matching mode shape. 

The physical properties used for the plate elements in the FEA model of the aluminum plate 

were, 
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1. Young’s modulus of elasticity: 1E07 lbf/in^2 (6.895E4 N/mm^2) 

2. Density: 0.101 lbm/in^3 (2.796E-6 kg/mm^3) 

3. Poisson’s Ratio: 0.33. 

4. Plate thickness: 0.375 in (9.525 mm)  

The Plate is made from 6061-T651 aluminum. A more accurate handbook value for the density 

of this alloy of aluminum is 0.0975 lbm/in^3 (2.966E-6 kg/mm^3). In addition, the Quad plate 

elements were given a nominal thickness of 0.375 in (9.525 mm). Plate stiffness is very sensitive 

to its thickness! 

Error in the density or thickness of the elements in the FEA plate model could be the reason why 

the frequency of each FEA mode shape was less than the frequency of its corresponding EMA 

mode shape. 

An FEA Modal Updating window is setup in Figure 20A to perform SDM calculations using 

multiple density and thickness values. The FEA Frequency of each of the 14 FEA mode shapes 

of the plate is listed in the upper spreadsheet. Each EMA frequency is listed as a Target 

Frequency. 

All 14 mode Shape Pairs are selected, meaning that each Solution Frequency will be compared 

with each Target Frequency to order the solutions from best to worst. The best solution is the 

one which minimizes the difference between each Solution Frequency and each Target 

Frequency 

The Solution Space is defined in the lower spreadsheet. The plate thickness and density are 

selected, and each has 10 Property Steps (or values) between its Property Minimum & 

Property Maximum. Solutions will be calculated over a solution space of 100 property values, 

using all combinations of 10 different thicknesses and 10 different densities. 

 
Figure 20A. Setup for 100 FEA Model Updating Solutions 
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Figure 20B. Best Solution for Updating Density & Thickness 

The properties of the original FEA model are required in order to update those properties. 

To perform FEA Model Updating, the properties of the unmodified model must be removed 

from the mass & stiffness matrices before the new properties can be added. 

Figure 20B shows the Model Updating window after 100 solutions have been calculated and 

ordered from best to worst. For all 14 Shape Pairs, each Solution Frequency closely matches 

each Target Frequency. The Solution MAC between each Shape Pair also indicates that the 

mode shapes of all 14 mode shapes were not changed by updating the density & thickness. 

The updated density (0.0967) more closely matches the handbook density for 6061-T651 

aluminum. The updated thickness (0.417 in.) is more than the thickness originally used but it 

resulted in new modal frequencies that more closely matched the experimental frequencies. 
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Difference Between Modal Sensitivity and FEA Model Updating 

In order to calculate the new modes of a modified structure, SDM only requires a modal model 

of the unmodified structure together with FEA elements. For Modal Sensitivity Analysis the 

properties of modification elements are used. For FEA Modal Updating the properties of FEA 

elements of the FEA model are used. 

In Modal Sensitivity Analysis, multiple SDM solutions are calculated over a solution space of 

modification element properties, and the solutions are ordered from best to worst based on how 

closely the Solution frequency & damping of each selected Shape Pair match the Target modal 

frequency & damping. 

In FEA Model Updating, multiple SDM solutions are calculated over a solution space of FEA 

model properties, and the solutions are ordered from best to worst based on how closely the 

Solution frequency & mode shape of each selected Shape Pair match the Target modal frequency 

& mode shape. 

Whether SDM is used for Modal Sensitivity or FEA Model Updating studies, thousands of 

potential property changes can be quickly evaluated and sorted from best to worst based on how 

close a Solution is to Target values. In these applications, SDM is very useful for “closing the 

gap” between analytical and experimental results. 
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