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Digital Fourier analyzers have opened a new era in 
structural dynamics testing. The ability of these systems 
to measure a set of structural transfer functions quickly 
and accurately and then operate on them to extract modal 
parameters is having a significant impact on the product 
design and development cycle. In order to use these 
powerful new tools effectively, it is necessary to have a 
basic understanding of the concepts which are employed. 
In Part I of this article, the structural dynamics model was 
introduced and used for presenting the basic mathemat-
ics relative to modal analysis and the representation of 
modal parameters in the Laplace domain. Part I conclud-
ed with a section describing the basic theoretical con-
cepts relative to measuring transfer and coherence func-
tions with a digital Fourier analyzer. Part II presents an 
introductory discussion of several techniques for measur-
ing structural transfer functions with a Fourier analyzer. 
Broadband testing techniques are stressed and digital 
techniques for identifying closely coupled modes via in-
creased frequency resolution are introduced.  

 
Certainly one of the most important areas of structural 

dynamics testing is the use of modern experimental tech-
niques for modal analysis. The development of analytical 
and experimental methods for identifying modal parame-
ters with digital Fourier analyzers has had a dramatic im-
pact on product design in a number of industries. The 
application of these new concepts has been instrumental 
in helping engineers design mechanical structures which 
carry more payload, vibrate less, run quieter, fail less fre-
quently, and generally behave according to design when 
operated in a dynamic environment. 

Making effective measurements in structural dynamics 
testing can be a challenging task for the engineer who is 
new to the area of digital signal analysis. These powerful 
new signal analysis systems represent a significant de-
parture from traditional analog instrumentation in terms of 
theory and usage. By their very nature, digital techniques 
require that all measurements be discrete and of finite 
duration, as opposed to continuous duration in the analog 
domain. However, the fact that digital Fourier analyzers 
utilize a digital processor enables them to offer capabili-
ties to the testing laboratory that were unheard of only a 
few years ago.  

Modal analysis, an important part of the overall struc-
tural dynamics problem, is one area that has benefited 
tremendously from the advent of digital Fourier analysis. 
The intent of this article is to present some of the im-
portant topics relative to understanding and making effec-
tive measurements for use in modal analysis. The engi-

neer using these techniques needs to have a basic un-
derstanding of the theory on which the identification of 
modal parameters is based, in order to make a meas-
urement which contains the necessary information for 
parameter extraction. 

Part I of this article introduced the structural dynamics 
model and how it is represented in the Laplace or s-
domain. The Laplace formulation was used, because it 
provides a convenient model to present the definition of 
modal parameters and the mathematics for describing a 
mode of vibration. 

In this part, we will diverge from the mathematics and 
present some practical means for measuring structural 
transfer functions for the purpose of modal parameter 
identification. Unfortunately, the scope of this article does 
not permit a thorough explanation of many factors which 
are important to the measurement process, such as sam-
pling, aliasing, and leakage.1 Instead, we will concentrate 
more on different types of excitation and the importance 
of adequate frequency resolution. 
 
Identification of Modal Parameters: 
a Short Review 

In Part I we derived the time, frequency and Laplace or 
s-plane representation of a single-degree-of-freedom sys-
tem, which has only one mode of vibration.  

The time domain representation is a statement of New-
ton's second law 
 

)()()()( tftkxtxctxm =++     (1) 
 
where 

)(tf  = applied force 
)(tx  = resultant displacement 
)(tx  = resultant velocity 
)(tx  = resultant acceleration 

m = mass 
c = damping constant 
k = spring constant 
 

This equation of motion gives the correct time domain 
response of a vibrating system consisting of a single 
mass, spring and damper, when an arbitrary input force is 
applied 

The transfer function of the single-degree-of-freedom 
system is derived in terms of its s-plane representation by 
introducing the Laplace transform. The transfer function is  
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Figure I—A mechanical system can be described in: (A) the time domain, (B) the frequency domain or (C) the Laplace domain. 

 
defined as the ratio of the Laplace transform of the output 
of the system to the Laplace transform of the input. The 
compliance transfer function was written as 
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Finally, the Frequency domain form is found by apply-

ing the fact that the Fourier transform is merely the La-
place transform evaluated along the ωj  or frequency 
axis ot the complex Laplace plane. This special case of 
the transfer function is called the frequency response 
function and is written as, 
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cC  = critical damping 

nω  = natural frequency 
  
Thus, as shown in Figure 1, the motion of a mechanical 
system can be completely described as a function of time, 
frequency, or the Laplace variable, s. Most importantly, all 
are valid ways of characterizing a system and the choice 
generally dictated by the type of information that is de-
sired. 

Because the behavior of mechanical structures is more 
easily characterized in the frequency domain, especially 
in terms of modes of vibration, we will devote our atten-
tion to their frequency domain description.  A mode of 
vibration (the thk  mode) is completely described by the 
four Laplace parameters: kω , the natural frequency; kσ , 
the modal damping coefficient; and the complex residue, 
which is expressed as two terms, magnitude and phase. 
The residues define the mode shapes for the system.  
The Fourier transform is the tool that allows us to trans-
form time domain signals to the Frequency domain and 
thus observe the Laplace domain along the frequency 
axis. It is possible to show that the transfer function over 
the entire s-plane is completely determined by its values 
along the ωj  axis, so the frequency response function 
contains all of the necessary information to identify modal 
parameters.  

Digital Fourier analyzers, such as the one shown in 
Figure 2, have proven to be ideal tools for measuring 
structural frequency response functions (transfer func-
tions) quickly and accurately. Coupling this with the fact 
that modes of vibration can be identified from measured 
frequency respouse functions by digital parameter identi-
fication techniques gives the testing laboratory an accu-
rate and cost effective means for quickly characterizing a 
structure's dynamic behavior by identifying its modes of 
vibrations.2  

The remainder of this article will attempt to introduce 
some of the techniques which are available for making 
effective frequency response measurements with digital 
Fourier analyzers.  
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Figure 2—The Hewlett-Packard 5451B FourierAnalyzer is typi-
cal of modern digital signal analyzers which are being increas-
ingly used for the acquisition and processing of modal analysis 

data. 
 

Measuring Structural Frequency Response Functions 
The general scheme for measuring frequency response 

functions with a Fourier analyzer consists of measuring 
simultaneously an input and response signal in the time 
domain, Fourier transforming the signals, and then form-
ing the system transfer function by dividing the trans-
formed response by the transformed input. This digital 
process enjoys many benefits over traditional analog 
techniques in terms of speed, accuracy and post-
processing capability.3  One of the most important fea-
tures of Fourier analyzers is their ability to form accurate 
transfer functions with a variety of excitation methods. 
This is in contrast to traditional analog techniques which 
utilize sinusoidal excitation.  Other types of excitation can 
provide faster measurements and a more accurate simu-
lation of the type of excitation which the structure may 
actually experience in service. The only requirement on 
excitation functions with a digital Fourier analyzer is that 
they contain energy at the frequencies to be measured. 
The following sections will discuss three popular methods 
for exciting a structure for the purpose of measuring 
transfer functions; they are, random, transient, and sinus-
oidal excitation. To begin with, we will restrict our discus-
sion to baseband measurements; i.e., measurements 
made from dc (zero frequency) to some maxF (maximum 
requency). The procedures for using these broadband 

stimuli (except transient) are all very similar. They are 
typically used to drive a shaker which in turn excites the 
mechanical structure under test. The general process is 
illustrated in Figure 3. 
 
Random Excitation Techniques 

In this section, three types of broadband random excita-
tion which can be used for making frequency response 
measurements are discussed. Each one possesses a 
distinct set of characteristics which should be understood 
in order to use them effectively. The three types are: (1) 
pure random, (2) pseudo random, and (3) periodic ran-
dom.  

Typically, pure random signals are generated by an ex-
ternal signal generator, whereas pseudo random and pe-
riodic random are generated by the analyzer's processor 
and output to the structure via a  

 
Figure 3—The general test setup for rnaking frequency re-

sponse measurements with a digital Fourier analyzer and an 
electro-dynamic shaker. 

 

 
Figure 4—Comparison of pure random, pseudo random, and 

periodic random noise. Pure random is never periodic. Pseudo 
random is exactly periodic every T seconds. Periodic random is 

a combination of both; i.e., a pseudo random signal that is 
changed for every ensemble average. 

 
digital-to-analog converter, as shown in Figure 3.  Figure 
4 illustrates each type of random signal.  
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Pure Random  

Pure random excitation typically has a Gaussian distri-
bution and is characterized by the fact that it is in no way 
periodic, i.e., does not repeat. Typically, the output of an 
independent signal generator may he passed through a 
bandpass filter in order to concentrate energy in the band 
of interest. Generally, the signal spectrum will be flat ex-
cept for the filter rolloff and, hence, only the overall level 
is easily controlled. 

One disadvantage of this approach is that, although the 
shaker is being driven with a flat input spectrum, the 
structure is being excited by a force with a different spec-
trum due to the impedance mismatch between the struc-
ture and shaker head. This means that the force spec-
trum is not easily controlled and the structure may not be 
forced in the optimum manner.  Since it is difficult to 
shape the spectrum because it is not generally controlled 
by the computer, some form of closed-loop force control 
system would ideally be used. Fortunately, in most cases, 
the problem is not important enough to warrant this effort.  

A more serious drawback of pure random excitation is 
that the measured input and response signals are not 
periodic in the measurement time window of the analyzer. 
A key assumption of digital Fourier analysis is that the 
time waveforms be exactly periodic in the observation 
window. If this condition is not met, the corresponding 
frequency spectrum will contain so-called "leakage" due 
to the nature of the discrete Fourier transform; that is, 
energy from the non-periodic parts of the signal will "leak" 
into the periodic parts of the spectrum, thus giving a less 
accurate result.1  

In digital signal analyzers, non-periodic time domain da-
ta is typically multiplied by a weighting function such as a 
Hanning window to help reduce the leakage caused by 
non-periodic data and a standard rectangular window.  

When a non-periodic time waveform is multiplied by this 
window, the values of the signal in the measurement win-
dow more closely satisfy the requirements of a periodic 
signal. The result is that leakage in the spectrum of a sig-
nal which has been multiplied by a Hanning window is 
greatly reduced. 

However, multiplication of two time waveforms, i.e., the 
non-periodic signal and the Hanning window, is equiva-
lent to the convolution of their respective Fourier trans-
forms (recall that multiplication in one domain is exactly 
equivalent to convolution in the other domain). Hence, 
although multiplication of a non-periodic signal by a Han-
ning window reduces leakage, the spectrum of the signal 
is still distorted due to the convolution with the Fourier 
transform of the Hanning window. Figure 5 illustrates 
these points for a simple sinewave. 

With a pure random signal, each sampled record of da-
ta T seconds long is different from the proceeding and 
following records. (Figure 4). This gives rise to the single 
most important advantage of using a pure random signal 
for transfer function measurement. Successive records of 
frequency domain data can be ensemble averaged to-

gether to remove non-linear effects, noise, and distortion 
from the measurement. As more and more averages are 
taken, all of these components of a structure's motion will 
average toward an expected value of zero in the frequen-
cy domain data. Thus, a much better measure of the line-
ar least squares estimate of the response of the structure 
can be obtained.3  

This is especially important because digital parameter 
estimation schemes are all based on linear models and 
the premise that the structure behaves in a linear manner.  
Measurements that contain distortion will be more difficult 
to handle if the modal parameter identification techniques 
used are based upon a linear model of the structure's 
motion. 

 
 

 
Figure 5—(A) A sinewave is continuous throughout time and is 
represented by a single line in the frequency domain; (B) when 
observed with a standard rectangular window, it is still a single 
spectral line, if it is exactly periodic in the window; (C) if it is not 
periodic in the measurement window, leakage occurs and ener-

gy "leaks" into adjacent frequency channels; (D) the Hanning 
window is one of many types of windows which are useful for 
reducing the effects of leakage; and (E) multiplying the time 

domain data by the Hanning window causes it to more closely 
meet the requirement of a periodic signal, thus reducing the 

leakage effect. 
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Pseudo-Random   
In order to avoid the leakage effects of a non-periodic 
signal, a waveform known as pseudo random is common-
ly used. This type of excitation is easy to implement with 
a digital Fourier analyzer and its digital-to-analog (DAC) 
converter. The most commonly used pseudo random sig-
nal is referred to as "zero-variance random noise." It has 
uniform spectral density and random phase. The signal is 
generated in the computer and repeatedly output to the 
shaker through the DAC every T seconds (Figure 4). The 
length of the pseudo random record is thus exactly the 
same as the analyzer's measurement record length (T 
seconds), and is thus exactly periodic in the measure-
ment window.   

Because the signal generation process is controlled by 
the analyzer's computer, any signal which can be de-
scribed digitally can be output through the DAC. The de-
sired output signal is generated by specifying the ampli-
tude spectrum in the frequency domain; the phase spec-
trum is normally random. The spectrum is then Fourier 
transformed to the time domain and output through the 
DAC. Therefore, it is relatively easy to alter the stimulus 
spectrum to account for the exciter system characteris-
tics.  

In general, besides providing leakage-free measure-
ments, a technique using pseudo random noise can often 
provide the fastest means for making a statistically accu-
rate transfer function measurement when using a random 
stimulus. This proves to be the case when the measure-
ment is relatively free of extraneous noise and the system 
behaves linearly, because the same signal is output re-
peatedly and large numbers of averages offer no signifi-
cant advantages other than the reduction of extraneous 
noise. 

The most serious disadvantage of this type of signal is 
that because it always repeats with every measurement 
record taken, non-linearities, distortion, and periodicities 
due to rattling or loose components on the structure can-
not be removed from the measurement by ensemble av-
eraging, since they are excited equally every time the 
pseudo random record is output. 
 
Periodic Random 

Periodic random waveforms combine the best features 
of pure random and pseudo random, but without the dis-
advantages; that is, it satisfies the conditions for a period-
ic signal, yet changes with time so that it excites the 
structure in a truly random manner. 

The process begins by outputting a pseudo random 
signal from the DAC to the exciter. After the transient part 
of the excitation has died out and the structure is vibrating 
in its steady-state condition, a measurement is taken; i.e., 
input, output, and cross power spectrums are formed. 
Then instead of continuing to output the same signal 
again, a different uncorrelated pseudo random signal is 
synthesized and output (refer again to Figure 4). This new 
signal excites the structure in a new steady-state manner 
and another measurement is made. 

When the power spectrums of these and many other 
records are averaged together, non-linearities and distor-
tion components are removed from the transfer function 
estimate. Thus, the ability to use a periodic random signal 
eliminates leakage problems and ensemble averaging is 
now useful for removing distortion because the structure 
is subjected to a different excitation before each meas-
urement. 

The only drawback to this approach is that it is not as 
fast as pseudo random or pure random, since the transi-
ent part of the structure's response must be allowed to die 
out before a new ensemble average can be made. The 
time required to obtain a comparable number of averages 
may be anywhere from 2 to 3 times as long. Still, in many 
practical cases where a baseband measurement is ap-
propriate, periodic random provides the best solution, in 
spite of the increased measurement time. 
 
Sinusoidal Testing 

Until the advent of the Fourier analyzer, the measure 
ment of transfer functions was accomplished almost excI-
usively through the use of swept-sine testing. With this 
method, a controlled sinusoidal force is input to the struc-
ture, and the ratio of output response to the input force 
versus frequency is plotted. Although sine testing was 
necessitated by analog instrumentation, it is certainly not 
limited to the analog domain. Sinusoidally measured 
transfer functions can be digitized and processed with the 
Fourier analyzer or can be measured directly, as we will 
explain here. 

In general, swept sinusoidal excitation with analog in-
strumentation has several disadvantages which severely 
limit its effectiveness: 
1) Using analog techniques, the low frequency range is 

often limited to several Hertz.  
2) The data acquisition time can be long. 
3) The dynamic range of the analog instrumentation lim-

its the dynamic range of the transfer function meas-
urements. 

4) Accuracy is often difficult to maintain.  
5) Non-linearities and distortion are not easily coped 

with.   
However, swept-sine testing does offer some advantages 
over other testing forms: 
1) Large amounts of energy can be input to the structure 

at each particular frequency.  
2) The excitation force can be controlled accurately. 
Being able to excite a structure with large amounts of en-
ergy provides at least two benefits. First, it results in rela-
tively high signal-to-noise ratios which aid in determining 
transfer function accuracy and, secondly, it allows the 
study of structural non-linearities at any specific frequen-
cy, provided the sweep frequency can be manually con-
trolled. 

Sine testing can become very slow, depending upon 
the frequency range of interest and the sweep rate re-
quired to adequately define modal resonances. Averaging 
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is accomplished in the time domain and is a function of 
the sweep rate. 

A sinusoidal stimulus can be utilized in conjunction with 
a digital Fourier Analyzer in many different ways.  How-
ever, the fastest and most popular method utilizes a type 
of signal referred to as a "chirp." A chirp is a logarithmi-
cally swept sinewave that is periodic in the analyzer's 
measurement window, T. The swept sine is generated in 
the computer and output through the DAC every T sec-
onds. Figure 10G shows a chirp signal. The important 
advantage of this type of signal is that it is sinusoidal and 
has a good peak-to-rms ratio. This is an important con-
sideration in obtaining the maximum accuracy and dy-
namic range from the signal conditioning electronics 
which comprise part of the test setup. Since the signal is 
periodic, leakage is not a problem. However, the chirp 
suffers the same disadvantage as a pseudo random 
stimulus; that is, its inability to average out non-linear ef-
fects and distortion.   

Any number of alternate schemes for using sinusoidal 
excitation can be implemented on a Fourier analyzer.  
However, they will not be discussed here because they 
offer few, if any, advantages over the chirp and, in fact, 
generally serve to make the measurement process more 
tedious and lengthy. 

 
Transient Testing 

As mentioned earlier, the transfer function of a system 
can be determined using virtually any physically realiza-
ble input, the only criteria being that some input signal 
energy exists at all frequencies of interest. However, be-
fore the advent of mini-computer-based Fourier analyz-
ers, it was not practical to determine the Fourier transform 
of experimentally generated input and response signals 
unless they were purely sinusoidal.   

These digital analyzers, by virtue of the fast Fourier 
transform, have allowed transient testing techniques to 
become widely used. There are two basic types of transi-
ent tests: (1) Impact, and (2) Step Relaxation. 

   
Impact Testing 

A very fast method of performing transient tests is to 
use a hand-held hammer with a load cell mounted to it to 
impact the structure. The load cell measures the input 
force and an accelerometer mounted on the structure 
measures the response. The process of measuring a set 
of transfer functions by mounting a stationary response 
transducer (accelerometer) and moving the input force 
around is equivalent to attaching a mechanical exciter to 
the structure and moving the response transducer from 
point to point. In the former case, we are measuring a row 
of the transfer matrix whereas in the latter we are meas-
uring a column.2 

In general, impact testing enjoys several important ad-
vantages: 
1) No elaborate fixturing is required to hold the structure 

under test. 
2) No electro-mechanical exciters are required. 

3) The method is extremely fast, often as much as 100 
times as fast as an analog swept-sine test. 

However, this method also has drawbacks. The most se-
rious is that the power spectrum of the input force is not 
as easily controlled as it is when a mechanical shaker is 
used. This causes non-linearities to be excited and can 
result in some variablity between successive measure-
ments. This is a direct consequence of the shape and 
amplitude of the input force signal. 

The impact force can be altered by using a softer or 
harder hammer head. This, in turn, alters the correspond-
ing power spectrum. In general, the wider the width of the 
force impulse, the lower the frequency range of excitation. 
Therefore, impulse testing is a matter of trade-offs. A 
hammer with a hard head can be used to excite higher 
frequency modes, whereas a softer head can be used to 
concentrate more energy at lower frequencies. These two 
cases are illustrated in Figures 6 and 7. 

Since the total energy supplied by an impulse is distrib-
uted over a broad frequency range, the actual excitation 
energy density is often quite small. This presents a prob-
lem when testing large, heavily damped structures, be-
cause the transfer function estimate will suffer due to the 
poor signal-to-noise ratio of the measurement. Ensemble 
averaging, which can be used with this method, will great-
ly help the problem of poor signal-to-noise ratios. 

Another major problem is that of frequency resolution.  
Adequate frequency resolution is an absolute necessity in 
making good structural transfer function measurements.   

 
Figure 6—An instrumented hammer wih a hard head is used for 
exciting higher frequency modes but with reduced energy densi-

ty. 

 
Figure 7—An instrumented hammer with a soft head can be 

used for concentrating more energy at lower frequencies, how-
ever, higher frequencies are not excited. 

 
The fundamental nature of a transient response signal 
places a practical limitation on the resolution obtainable.  
In order to obtain good frequency resolution for quantify-
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ing very lightly damped resonances, a large number of 
digital data points must be used to represent the signal.  
This is another way of saying that the Fourier transform 
size must be large since averaging, which can be used 
with this method, will greatly help the problem of poor 
signal-to-noise ratios.  Another major problem is that of 
frequency resolution. Adequate frequency resolution is an 
absolute necessity in making good measurements. 
 

T
f 1

size ansformFourier tr 
interest offrequency  maximum

2
1
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Thus, as the response signal decays to zero, its signal-to-
noise ratio becomes smaller and smaller. If it has de-
cayed to a small value before a data record is completely 
filled the Fourier transform will be operating mostly on 
noise therefore causing uncertainties in the transfer func-
tion measurement. Obviously, the problem becomes 
more acute as higher frequency resolutions are needed 
and as more heavily damped structures are tested. Figure 
8 illustrates this case for a simple single degree-of-
freedom system. In essence frequency resolution and 
damping form the practical limitations for impulse testing 
with baseband (dc to maxF ) Fourier analysis.  
Since a transient signal may or may not decay to zero 
within the measurement window, windowing can be a se-
rious problem in many cases, especially when the damp-
ing is light and the structure tends to vibrate for a long 
time. In these instances, the standard rectangular window 
is unsatisfactory because of the severe leakage. Digital 
Fourier analyzers allow the user to employ a variety of 
different windows which will alleviate the problem. Typi-
cally, a Hanning window would be unsuitable because it 
destroys data at the first of the record the most important 
part of a transient signal.  The exponential window can be 
used to preserve the important information in the wave-
form while at the same time forcing the signal to become 
periodic.  It must, however, be applied with care, espe-
cially when modes are closely spaced, for exponential 
smoothing can smear modes together so that they are on 
longer discernible as separate modes.  Reference 4 ex-
plains this in more detail. 

 
Figure 8—The impulse responses for two single-degree-of-
freedom systems with different amounts of damping.  Each 

measurement contains exactly the same amount of noise. The 
Fourier transform of the heavily damped system will have more 

uncertainty because of the poor signal-to-noise ratio in the last 
half of the data record. 

 
In spite of these problems, the value of impact testing for 
modal analysis cannot be overstressed. It provides a 
quick means for troubleshooting vibration problems. For a 
great many structures an impact can suitably excite the 
structure such that excellent transfer function measure-
ments can be made.  The secret of its success rests with 
the user and his understanding of the physicis of the situ-
ation and the basics of digital signal processing. 

 
Step Relaxation Testing 

Step relaxation is another form of transient testing 
which utilizes the same type of signal processing tech-
niques as the impact test. In this method, an inextensible, 
light weight cable is attached to the structure and used to 
preload the structure to some acceptable force level. The 
structure "relaxes" with a force step when the cable is 
severed, and the transient response of the structure, as 
well as the transient force input, are recorded. 

Although this type of excitation is not nearly as conven-
ient to use as the impulse method, it is capable of putting 
a great deal more energy into the structure in the low fre-
quency range. It is also adaptable to structures which are 
too fragile or too heavy to be tested with the hand-held 
hammer described earlier. Obviously, step relaxation test-
ing will also require a more complicated test setup than 
the impulse method but the actual data acquisition time is 
the same. 
 
Testing a Simple Mechanical System 

A single-degree-of-freedom system was tested with 
each type of excitation method previously discussed. Be-
sides measuring the linear characteristics of the system 
with each excitation type, gross non-linearity was simu-
lated by clipping approximately one-third of the output 
signal. This condition simulates a "hard stop" in an other-
wise unconstrained system. The intent of these tests was 
to show how certain forms of excitation can be used to 
measure the linear characteristics of a system with a 
large amount of distortion. This is extremely important to 
the engineer who is interested in identifying modal pa-
rameters. 

Figure 9 illustrates the form of each type of stimulus 
and its power spectrum after fifteen ensemble averages. 
Notice that the input power spectrums for both the pure 
random and periodic random cases have more variance 
than the others. This is because each ensemble average 
consisted of a new and uncorrelated signal for these two 
stimuli. The pseudo random and swept sine (chirp) sig-
nals were controlled by the analyzer's digital-to-analog 
converter and each ensemble average was in fact the 
same signal, thus resulting in zero variance. In this test, 
the transient signal was also controlled by the DAC to 
obtain record-to-record repeatability and resulting zero 
variance. In all cases, the notching in the power spec-
trums is due to the impedance mismatch between the 
structure and the shaker. A final interesting note is that all 
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spectrums except the swept sine are flat out to the cut-off 
frequency.  The roll-off of the swept sine spectrum is due 
to the logarithmic sweep rate.  Thus, the spectrum has 
reduced energy density as the frequency is increased.   
Recall that in Part I we discussed the use of the coher-
ence function to assess the quality of the transfer function 
measurement. In Figure 10, the results obtained from 
testing the single-degree-of-freedom system with and 
without distortion are shown. In Figures 10A and 10B the 
cases for pure random excitation, notice that the coher-
ence is noticeably different from unity in the vicinity of the 
resonance. This is due to the non-periodicity of the sig-
nals and the fact that Hanning windowing was used to 
reduce what would have otherwise been even more se-
vere leakage.  The leakage effect is much more sensitive 
here, due to the sharpness of the resonance, i.e., the rate 
of change of the function. Although the effect is certainly 
present throughout the rest of the band, the relatively 
small changes in response level between data points 
away from the resonance will obviously tend to minimize 
the leakage from adjacent channels. Although any num-
ber of different windowing functions could have been 
used, the phenomenon would still exist.  

Figures 10C-10J show the results of testing the system 
with the other excitation forms. In all figures showing the 
distorted case, the best fit of a linear model to the meas-
ured data is also shown. The coherence is almost exactly 
unity for the linear cases shown in Figures 10C, E, G and 
I. This is because all are ideally leakage-free measure-
ments because they are periodic in the analyzer's meas-
urement window. For the cases with distortion, the latter 
three show very good coherence even though the system 
output was highly distorted. This apparently good value of 
coherence is due to the nature of the zero-variance peri-
odic signals used as stimuli. In cases 10B and 10D, the 
measurements are truly random from average to average 
and the coherence is more indicative of the quality of the 
measurement. The low coherence values at the higher 
frequencies are primarily a result of the poor signal ener-
gy available. The conclusion is that the coherence func-
tion can be misleading if one does not understand the 
measurement situation. 
Even though the system was highly distorted, it is appar-
ent that the pure random and periodic random stimuli 
provided the best means for transfer function measure-
ments, as seen in Figures 10B and 10D. Again, this is 
due to their ability to effectively use ensemble averaging 
to remove the distortion components from the measure-
ment.  The distortion cannot be removed using the other 
types of periodic stimuli and this is evident in Figures 10F, 
H and J. The results obtained from fitting a linar model to 
the measured data are given in Table I. 
In all cases where the linear motion was measured, each 
type of excitation gave excellent results, as indeed they 
should. The one item worthy of mention is the estimate of 
damping with the pure random result. In this case, the 
value is about 7% higher than the correct value. This er-
ror is due to the windowing effect on the data. In this test, 

a Hanning window was used. However, any number of 
other windows could have been used and error would still 
be present. Further evidence of the Hanning effect on the 
data is shown by the error between the linear model and 
the measured data.  

Of considerable importance is the data for the simulat-
ed distortion. The primary conclusion that can be drawn 
from these data is that the periodic random stimulus pro-
vides a good means for measuring the linear response of 
a linear system and is clearly superior to a pure random 
stimulus. It is also the best possible excitation for measur-
ing the linear response of a system with distortion. Evi-
dence of this is seen in the quality of the parameter esti-
mates in Table I and the relative error (the error index 
between the ideal linear model and the measured data). 
The principal characteristics of each type of excitation are 
summarized in Table II.   
 
Increasing Frequency Resolution 

Certainly the single most important factor affecting the 
accuracy of modal parameters is the accuracy of the 
transfer function measurements. And, in general, fre-
quency resolution is the most important parameter in the 
measurement process. In other words, it is simply not 
possible to extract the correct values of the modal pa-
rameters when there is inadequate information available 
to process. Modern curve fitting algorithms are highly de-
pendent on adequate resolution in order to give correct 
parameter estimates, including mode shapes. 

In this section we will introduce Band Selectable Fourier 
Analysis (BSFA), the so-called "zoom" transform. BSFA is 
a measurement technique in which the Fourier transform 
is performed over a frequency band whose lower and up-
per limits are independently selectable. This is in contrast 
to standard baseband Fourier analysis, which is always 
computed over a frequency range from zero frequency to 
some maximum frequency, maxF . From a practical view-
point, in many complex structures, modal density is so 
great, and modal coupling (or overlap) so strong, that in-
creased frequency resolution over that obtainable with 
baseband techniques is an absolute necessity for achiev-
ing reliable results. 

In the past, many digital Fourier Analyzers have been 
limited to baseband spectral analysis; that is, the fre-
quency band under analysis always extends from dc to 
some maximum frequency. With the Fourier transform, 
the available number of discrete frequency lines (typically 
1024 or 512) are equally spaced over the analysis band.  
This, in turn, causes the available frequency resolution to 
be, ( )2max NFf =∆ , where N is the Fourier transform 
block size, i.e., the number of samples describing the re-
al-time function. There are 2N  complex (magnitude and 

phase) samples in the frequency domain. Thus, maxF and 
the block size, N. determine the maximum obtainable fre-
quency resolution. 
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Figure 9—Different excitation types and their power spectrums. 
Each type was used to test a single-degree-of-freedom system. 

Fifteen ensemble averages were used. 

 
Figure 10—Comparison of different excitation types for testing 
the same single-degree-of-freedom system with and without 

distortion. 
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Table I – Linear model comparison of single-degree-of-freedom system resonance frequency and damping meas-
urements using various excitation and analysis techniques 

 
Test Condition 

 
Frequency 

(Hz) 

Damping Co-
efficient 
(rad/sec) 

 
Magnitude 

 
Phase 
(deg) 

 
Relative Er-

ror 
Pure Random………………….. 549.44 56.83 3429.12    0.5 23.1 
Pure Random w/Distortion…… 550.10 56.22 2963.28 357.1 21.7 

Periodic Random……………… 549.46 52.76 3442.18    0.6 3.6 
Periodic Random w/Distortion.. 549.50 53.44 3272.00    0.4 4.2 

Pseudo Random………………. 549.55 52.76 3450.54    0.6 1.8 
Pseudo Random w/Distortion… 550.09 51.75 2766.06 359.3 32.4 

Swept Sine…………………….. 549.49 53.24 3444.01    0.6 2.2 
Swept Sine w/Distortion………. 549.77 53.76 2411.52    4.5 21.5 

Transient……………………….. 549.63 53.75 3453.26    0.7 5.7 
Transient w/Distortion…………. 549.68 53.13 2200.84 359.4 102.9 

BSFA with Pure Random…….. 549.44 53.12 3446.84    0.7 3.2 
 
 

Table II – Principal characteristics of five excitation methods 
 

Characteristics 
Pure Ran-

dom 
Pseudo 
Random 

Periodic 
Random 

 
Impact 

Swept Sine 
(Chirp) 

Force level is easily controlled………… Yes Yes Yes No Yes 
Force spectrum can be easily shaped... No Yes Yes No Yes 
Peak-to-rms energy level………………. Good Good Good Poor Best 
Requires a well-designed fixture and 

exciter system……………………….. 
 

Yes 
 

Yes 
 

Yes 
 

No 
 

Yes 
Ensemble averaging can be applied to 

remove extraneous noise…………… 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
Non-linearities and distortion effects 

can be removed by ensemble aver-
aging…………………………….. 

 
 

Yes 

 
 

No 

 
 

Yes 

 
 

Somewhat 

 
 

No 
Leakage Error…………………………… Yes No No Sometimes No 

 
 
The problem with baseband Fourier analysis is that, to 

increase the frequency resolution for a given value of 

maxF , the number of lines in the spectrum (i.e., the block 
size) must increase. There are two important reasons 
why this is an inefficient way to increase the frequency 
resolution:  
1. As the block size increases, the processing time re-

quired to perform the Fourier transform increases. 
2. Because of available computer memory sizes, the 

block size is limited to a relatively small number of 
samples (typically a maximum of 4096). 

More recently, however, the implementation of BSFA 
has made it possible to perform Fourier analysis over a 
frequency band whose upper and lower frequency limits 
are independently selectable. BSFA provides this in-
creased frequency resolution without increasing the num-
ber of spectral lines in the computer. 
 

 

BSFA operates on incoming time domain data to the 
analyzer’s analog-to-digital converter or time domain data 
that has previously been recorded on a digital mass stor-
age device. BSFA digitally filters the time domain data 
and stores only the filtered data in memory. The filtered 
data corresponds to the frequency band of interest as 
specified by the user. The procedure is completed by per-
forming a complex Fourier transform on the filtered data.  
Of fundamental importance is the fact that the laws of 
nature and digital signal processing also apply to the 
BSFA situation. Since the frequency resolution is always 
equal to the reciprocal of the observation time of the 
measurement, Tf 1=∆ , the digital filters must process 
T seconds of data to obtain a frequency resolution of T1  
in the analysis band. Whereas in baseband Fourier anal-
ysis the maximum resolution is always ( )2max NFf =∆
, the resolution with BSFA is ( )2NBWf =∆  where 
BW is the independently selectable bandwidth of the 
BSFA measurement. Therefore, by restricting our atten-
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tion to a narrow region of interest below maxF  and con-
centrating the entire power of the Fourier transform in this 
interval, an increase in frequency resolution equal to 

BWFmax  can be obtained (Figure 11).  

 
Figure11—Band Selectable Fourier AnalysisTM versus base-
band Fourier analysis.  BSFA processes more data to obtain 

increased frequency resolution. 

 
Figure 12—Hewlett-Packard's new 54470A Fourier Preproces-
sor gives the HP 5451B Fourier Analyzer greatly expanded ca-
pability for making Band Selectable Fourier Analysis measure-

ments. 

 
Figure 13—Pure random excitation and Band Selectable Fourier 

Analysis were used to test the single-degree-of- freedom sys-
tem of Figure 10. The resolution is 18 times better than the 

baseband case shown in figure 10A. Note the improved coher-
ence between the two sets of data, especially near the resonant 

frequency. 
 
The other significant advantage of BSFA is its ability to 
increase the dynamic range of the measuremnt to 90 dB 
or more in many cases. The increased dynamic range of 
BSFA is a direct result of the extremely sharp roll-off and 
out-of-band rejection of the pre-processing digital filters 
and of the increased frequency resolution which reduces 
the effect of the white quantizing noise of the analyzer's 
analog-to-digital converter.5 Certain types of BSFA filters 
can provide more than 90 dB of out-of-band rejection 
relative to a full scale in band spectral line, a characteris-
tic which is not matched by more traditional analog range 
translators (see Figure 12). 

The simple single-degree-of-freedom system which 
was tested with the various excitation types was also 
tested with BSFA using pure random excitation. We saw 
that in the baseband case, pure random was the least 
desirable signal because of the associated leakage and 
the resulting distortion of the transfer function waveform 
introduced by the Hanning window. By using BSFA, leak-
age is no longer an important source of error because of 
the great increase in the number of spectral lines used to 
describe the system. Figure 13 shows the coherence and 
transfer function between 524.6 Hz and 579.6 Hz with a 
resolution of 0.269 Hz, an increase of more than 18 over 
the baseband result. Note that the coherence is almost 
exactly unity, indicating the absence of any error due to 
leakage, and confirming the quality of the BSFA meas-
urement. As shown in Table I, the use of BSFA eliminates 
the error caused by the leakage in the baseband meas-
urement. 
A Practical Problem 

To illustrate the importance of BSFA, a mechanical 
structure was tested and modes in the area of 1225 Hz to 
1525 Hz were to be investigated. Figure14 is a typical 
baseband ( max-dc F ) transfer function measurement. It 
was taken with the following parameters: 
 

Block size………………...………………………1024 

maxF ………………………………...………..5000 Hz 
Filter cutoff………………………...…………2500 Hz 

f∆ ………………………………...…………9.765 Hz 
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Pure random noise was used to excite the structure 
through an electro-dynamic shaker. 
The Inadequacy of the Baseband Measurement 

Note that two modes are clearly visible between 1225 
Hz and 1525 Hz. This same measurement is shown in 
rectangular or co/quad form in Figure I5. Again, by exam-
ining the quadrature response, the two modes are seen, 
However, there is also a slight inflection in the response 
between these two modes which indicates that yet a third 
mode may be present. But there is insufficient frequency 
resolution to adequately define the mode. 

Returning to Figure 15, a partial display of the region 
between 1225 and 1525 Hz was made. The expanded 
quadrature display is shown in Figure 16. Realize that this 
represents no increase in frequency resolutions only an 
expansion of the plot.  Clearly only two modes were 
found. 

 
Figure 14—Baseband transfer function shows two modes at 
approximately 1320 Hz and 1400 Hz. 

 
Figure 15—Baseband measurement in co/quad form shows two 
major modes and a slight inflection between the two which pos-

sibly indicates a third mode. However, there is not enough 
resolution in the measurement to be sure or to identify the 

mode. 

 
Figure 16—Comparison of quadrature response of the base-

band and BSFA result. The BSFA measurement clearly shows 
the small third mode and the poor result of the baseband meas-

urement for the other two modes. 

 
Figure 17—Comparison of the BSFA and baseband transfer 

functions between 1225 and 1525 Hz.  In the BSFA result, three 
modes are clearly visible and well defined.  The baseband data 
would have led to considerable error in estimates of frequency 

and damping. 
 
Accurate Measurements with BSFA 

In order to accurately define the modes in this region, 
the structure was re-tested using Band Selectable Fourier 
Analysis (BSFA).  All 512 lines of spectral resolution were 
placed in a band from 1225 to 1525 Hz, resulting in a 
resolution of 0.610 Hz instead of 9.76 Hz, as in the base-
band measurement. The quadrature response attained 
with the BSFA is also shown in Figure 16 for comparative 
purposes. Note that three modes are now clearly visible. 
The small (third) mode of approximately 1350 Hz is now 
well defined, whereas it was not even apparent before. In 
addition, the magnitude of the first mode at 1320 Hz is 
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seen to be at least three times greater in magnitude than 
the result indicated by the baseband measurement. The 
corresponding results in log form are shown in Figure 17. 
This BSFA result was obtained by using only a 16:1 reso-
lution enhancement. Enhancements of more than 100:1 
are possible with BSFA. 

 
Implications of Frequency Resolution in Determining 
Modal Parameters and Mode Shapes. 

Referring again to Figure 15, we can clearly see the 
necessity of using adequate frequency resolution for mak-
ing a particular measurement. In addition, it is important 
to understand how the baseband result would lead to an 
incorrect answer in terms of modal parameters and mode 
shape. 
1. Modal Parameters. If the baseband result is com-

pared to the BSFA result for the 1320 Hz mode it is 
obvious that the baseband result would indicate that 
the mode is much more highly damped than it actual-
ly is. The second small mode (1350 Hz) would not 
even be found, and the 1400 Hz mode would also 
have the wrong damping. Close inspection also 
shows that the estimate of the resonance frequency 
for the 1320 Hz mode would have significant error.  

2. Mode Shape. Any technique for estimating the mode 
shape coefficients (e.g., quadrature response, circle 
fitting, differencing, least squares, etc.) would clearly 
be in error since it is apparent that the BSFA result 
shows a quadrature response at least three times 
greater than the baseband result. 

   
Although the proceeding example presented a case 

where the use of BSFA was a necessity, it is very easy 
for the engineer to be misled into believing he has made 
a measurement of adequate resolution when in fact he 
has not. The following concluding example illustrates this 
point and presents the estimates of the modal parameters 
for each case.  

A disc brake rotor was tested using an electro-dynamic 
shaker and pure random noise as a stimulus. A load cell 
was used to measure the input force and an accelerome-
ter mounted near the driving point was used to measure 
the response. The baseband measurement had a resolu-
tion of 9.76 Hz. As can be seen in Figure 18A, the two 
major modes at about 1360 Hz and 1500 Hz appear to be 
well defined. An expanded display (no increased resolu-
tion) from 1275 Hz to 1625 Hz clearly shows the two large 
modes and a much smaller mode at about 1580 Hz. 

The rotor was re-tested using BSFA and the two sets of 
data are compared in Figure 18. This data clearly shows 
the value of BSFA. The BSFA data provides increased 
definition of the modal resonances, as can be seen by 
comparing the baseband and BSFA results. The validity 
of each result is reflected in the respective coherence 
functions. The baseband transfer function contains inac-
curacies due to the Hanning effect, as well as inadequate 
resolution. The coherence for the BSFA measurement is 
unity in the vicinity of all three modal resonances, indicat-

ing the quality of the transfer function measurement.  Fur-
ther proof of the increased modal definition is shown in 
the BSFA Nyquist plot (co versus quad). Here, all three 
modes are clearly discernible and form almost perfect 
circles, indicating an excellent measurement, almost total-
ly free of distortion. In the baseband result, only three or 
four data points were available in the vicinity of each res-
onance, whereas in the BSFA data many more points are 
used.    

The modal parameters for all three modes were identi-
fied from the baseband and BSFA data and the results 
are shown in Table III. Comparison of results emphasizes 
the need for BSFA when accurate modal parameters are 
desired.   

In summary, no parameter identification techniques are 
capable of accurately identifying modal parameters or 
mode shapes when the frequency resolution of the 
measurement is not adequate.  

 
Summary  

We have seen that frequency response functions can 
be used for identifying the modes of vibration of an elastic 
structure and that the accurate measurement of the fre-
quency response functions is the most important factor 
affecting the estimates of the modal parameters. 

Pure random, pseudo random, periodic random, swept 
sine, and transient techniques for baseband Fourier anal-
ysis were discussed. All types of stimuli, except for pure 
random, gave excellent results when used for testing a 
linear system. The pure random result contained some 
error because its non-periodicity in the measurement 
window required that Hanning be used on the input and 
response waveforms, resulting in some distortion of the 
transfer function. 

For systems with distortion, periodic random offers sig-
nificant advantages over the other types of stimuli. It is 
best able to measure the linear response of distorted sys-
tems. This means that modal parameters extracted from 
transfer functions measured with periodic random will be 
more accurate. None of the techniques discussed are 
capable of compensating for inadequate frequency reso-
lution. 

Band Selectable Fourier Analysis was introduced as a 
means for arbitrarily increasing the frequency resolution 
of the frequency response measurement by more than 
100 times over standard baseband measurements. 
BSFA's increased resolution provides the best possible 
means for making measurements for the identification of 
modal parameters and, in a great number of practical 
problems, is the only feasible approach. 
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Figure 18—Baseband and BSFA inertance transfer functions 

from a disc brake rotor. The BSFA result gives a better estimate 
of the transfer function by using more data points. This results in 
a better estimate of the modal parameters as shown in Table III. 
Note the improved coherence and the clear definition of all three 

modes in the Nyquist display (co versus quad). 

 
Table III – Comparison of modal parameter test results 

 

Baseband Results, f∆ = 9.765 Hz 
Mode Frequency, 

Hz 
Damping, 

% 
Amplitude Phase 

1 1359.99 0.775 193.51 350.3 
2 1503.92 0.763 483.30   11.1 
3 1584.33 0.273    9.49 336.1 

 

BSFA Results, f∆ = 0.976 Hz 
Mode Frequency, 

Hz 
Damping, 

% 
Amplitude Phase 

1 1359.13 0.669 211.99 352.7 
2 1502.65 0.652 509.52    9.4 
3 1583.50 0.131   11.65 340.8 

 

Error, %, Versus Baseband 
 

Mode Frequency, 
Hz 

Damping, 
% 

Amplitude 

1 0   16%   8% 
2 0   17%   5% 
3 0 108% 19% 
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