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Abstract 
 
It is well known that the modal properties of a structure are 
directly related to its mass, stiffness, and damping properties. 
In fact, the modal parameters (eigenvalues and eigenvectors), 
are solutions to the differential equations of motion, which are 
written in terms of the mass, stiffness, and damping. 
 
This paper focuses on the determination of the functional rela-
tionship between variations in the mass, stiffness, and damp-
ing, and variations in the modal properties of structures. For 
small changes, this “sensitivity function” reduces to a very 
simple function of variations in the modal frequencies and 
damping only. This makes it possible to detect, locate, and 
quantify structural faults by monitoring frequency and damp-
ing only. This finding was previously reported by Stubbs et.al. 
[4], [5], [6]. 
 
In this paper the complete sensitivity functions for mass, stiff-
ness, and damping changes are derived, and the validity of the 
stiffness sensitivity for small changes is verified. It is also 
pointed out that the Structural Dynamics Modification (SDM) 
technique can be used to determine the additional terms for the 
complete sensitivity formulas. 
 
Nomenclature 
 
n = number of degrees-of-freedom (DOFs) of the structural 

dynamic model  
m, modes = number of modes  
[ ]M  = ( )nn by   mass matrix 

[ ]C  = ( )nn by   damping matrix  

[ ]K  = ( )nn by   stiffness matrix  

{ })(tx ′′  = acceleration n-vector  

{ })(tx′  = velocity n-vector 

{ })(tx  = displacement n-vector 

{ })(tf  = external force n-vector 

[ ]−− m  = ( )mm by   modal mass matrix 

[ ]−− c  = ( )mm by   modal damping matrix 

[ ]−− k  = ( )mm by   modal stiffness matrix 

kw  = damped natural frequency for mode k 

kd  = damping coefficient for mode k 

kW  = undamped natural frequency for mode k 

[ ]U  = ( )mn by   mode shape matrix 
 
Introduction 
 
The modes of vibration of a structure are strongly influenced 
by slight changes in its physical properties or its boundary 
conditions. This fact is also self evident if one considers the 
mathematical definition of modes as the eigenvalue solutions 
of the differential equations of motion for a vibrating struc-
ture. These equations result from a straightforward application 
of Newton's Second Law to the structure, and define a force 
balance between the inertial (mass), dissipative (damping), 
and restoring (stiffness) forces within the structure, and the 
externally applied forces. These equations are also related, via 
the Fourier transform, to the Frequency Response Function 
(FRF) form of the dynamic model, which can also be repre-
sented in terms of the modal parameters of the structure. This 
parametric form of the FRF matrix in terms of modal parame-
ters is the foundation upon which all modern day modal test-
ing is done. Finally, the Impulse Responses of a structure 
comprise a third, completely equivalent form of the dynamic 
model, and they too can be represented parametrically in terms 
of modes of vibration. Experimentally determined impulse 
responses are also used in modern day modal test systems to 
identify modal parameters. Figure 1 illustrates this interde-
pendency between the physical properties, (distributed mass, 
stiffness, and damping), the FRFs, the impulse responses, and 
the modal properties of a structure. It is clear, then, that 
changes in the physical properties or boundary conditions, 
(both of which affect the mass, stiffness, and damping proper-
ties), will cause changes in the measured FRFs or impulse 
response functions, and also will change the measured modal 
properties. 
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Figure 1 
 
In previous papers, [1], [2], [3], we investigated ways in which 
the current modal testing technology could be used for detect-
ing and locating structural faults. A structural fault could be 
any one of the occurrences listed in Figure 2. Using modern 
day digital testing equipment, a structure can be excited in a 
wide variety of ways, and high resolution, noise free, linear 
estimates of its FRFs can be obtained. Modal parameter identi-
fication methods can then be applied to the FRF measurements 
to very accurately determine the modal properties of the struc-
ture. The technology exists for detecting millihertz changes 
in modal frequencies and damping, and also for obtaining 
changes in mode shapes, if necessary. 
 
In the following development, we expand upon the work of 
Stubbs, et.al. [4], [5], [6]. They used the orthogonality condi-
tion for classically damped (or lightly damped) structures, and 
derived relationships between changes in the mass, stiffness, 
and damping matrices and changes in the modal parameters. 
The resulting equations can be used directly to locate and 
quantify damage (physical change) on a structure, if the un-
damaged mass, stiffness, and damping plus measured changes 
in the modal properties are known. 
 
A key finding of theirs, however, and one which we will veri-
fy here also, is that if the modal shapes don't change apprecia-
bly, (this usually holds for “small” changes in the physical 
properties), then damage can be located and quantified by 
using only changes in the modal frequencies and damping, 
plus the mode shapes of the undamaged structure. This 
offers a decided advantage from an implementation standpoint 
since modal frequency and damping can be easily measured at 
practically any point on a structure. 

 
What is a Structural Fault? 

 
• Failure of the Structural Material due to Fatigue. 

For example, cracking, breaking, delamination. 
 
• Loosening of Assembled Parts. For example, loose 

bolts, rivets, glued joints, or wear-out of parts. 
 
• Manufacturing Defects. For example, flaws voids or 

thin spots due to casting, molding, or forming opera-
tions. Improper assembly of parts. 

 
 
 

Figure 2 
 
Theoretical Background 
 
Modes of vibration are commonly defined as solutions to the 
following differential equations: 
 

[ ]{ } [ ]{ } [ ]{ } { })()()()( tftxKtxCtxM =+′+′′    (1) 
 
The modal properties are actually solutions to the homogene-
ous equations (i.e. where { } { }0)( =tf ), and are found by a 
straightforward eigensolution process. The coefficient matri-
ces ( [ ]M , [ ]C , and [ ]K ) are usually assumed to be real val-
ued and symmetric, and without any further assumptions, 
complex conjugate pairs of eigenvalues and corresponding 
eigenvectors can be found from these equations. These consti-
tute the so-called complex modes of the structure. However, if 
the damping term is assumed to be negligible compared to 
the mass and stiffness terms in equation (1), the eigenvalues 
and eigenvectors exhibit a very strong orthogonality property, 
which will be exploited here. The above assumption can be 
applied to the majority of real world structures, and certainly 
to those which vibrate freely. Another way of stating it is that 
the damping forces are assumed to be negligible compared 
to the inertial and restoring forces of the structure. Such 
structures are said to be classically damped, or simply lightly 
damped. 
 
The orthogonality property of the modes “almost” simultane-
ously diagonalizes the mass, stiffness, and damping matrices, 
and therefore “almost” uncouples the equations of motion. The 
term “almost” is used because strict diagonalization only oc-
curs if there is no damping [ ] [ ]( )0=C , or if the damping 
matrix is proportional to the mass and stiffness matrices, a 
difficult assumption to verify with real structures. Neverthe-
less, when damping is negligible, the following orthogonality 
conditions can be applied to the unmodified structure (struc-
ture with no fault): 

 

[ ] [ ][ ] [ ]−−= mUMU t     (2) 
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[ ] [ ][ ] [ ]−−= cUCU t    (3) 
 

[ ] [ ][ ] [ ]−−= kUKU t     (4) 
 
Two other relationships which result from orthogonality are: 
 

kkk mkW =2
0     modes...1=k  (5) 

 

kkk mcd =2    modes...1=k   (6) 
 
where: 2

0
2

0
2

0 kkk dwW +=  
 
and:  2

0
2

0 , kk dw  = frequency and damping of the un-
modified structure 

 
Equations (2) through (6) can also be written for the modified 
structure (structure with a fault): 
 

[ ] [ ][ ] [ ]−+−=+++ dmmdUUdMMdUU t   (7) 
 

[ ] [ ][ ] [ ]−+−=+++ dccdUUdcCdUU t   (8) 
 

[ ] [ ][ ] [ ]−+−=+++ dkkdUUdKKdUU t   (9) 
 

 ( ) ( )kkkkk dmmdkkW ++=2
1    modes...1=k  (10) 

 
where:  2

1
2

1
2

1 kkk dwW +=  
 

( ) ( )kkkkk dmmdccd ++=12  modes...1=k  (11) 
 
Notice that each of physical and modal properties of the modi-
fied structure is written in terms of the same property of the 
unmodified structure, plus an additive change “d” term. There-
fore, equations (7) through (11) can be expanded and the un-
modified conditions subtracted from them to yield a new set 
of formulas that relate changes in the mass, stiffness and 
damping matrices to changes in the modal properties: 

 

[ ] [ ][ ] [ ] [ ][ ]
[ ] [ ][ ] [ ]−−=+

+++

dmdUMdU

UMdUdUUdMdUU
t

tt 2
  (12) 

 

[ ] [ ][ ] [ ] [ ][ ]
[ ] [ ][ ] [ ]−−=+

+++

dcdUCdU

UCdUdUUdCdUU
t

tt 2
  (13) 

 

[ ] [ ][ ] [ ] [ ][ ]
[ ] [ ][ ] [ ]−−=+

+++

dkdUKdU

UKdUdUUdKdUU
t

tt 2
  (14) 

 
( ) kkkkkk dkWdmWWm =+− 2

1
2

0
2

1   (15) 
 

( ) kkkkkk dcddmddm =+− 101 22   (16) 
 
 
Stiffness Changes 
 
Probably the most sought after cause of a structural fault is a 
reduction in local stiffness, which might be caused by the for-
mation of a crack, delamination, or a loose fastener. The above 
equations can be combined to yield a single relationship be-
tween changes in the stiffness matrix [ ]dK  and changes in 
the modal parameters. 
 
Mode mass )( km  is simply a scaling constant and therefore, 
can be arbitrarily set to any value. We can always scale the 
mode shapes to unity modal masses, so that km  = 1 and (

km + kdm ) = 1, which also implies that kdm  = 0 for all 

modes (k). 
 
Combining equations (14) and (15) and using mode shapes 
scaled to unit modal masses gives the following stiffness sen-
sitivity equation: 
 
{ } [ ]{ } { } [ ]{ }

{ } [ ]{ } modes...12
0

2
1 =−=+

+++

kwwdUKdU

UKdUdUUdKdUU

kkk
t

k

k
t

kkk
t

kk (17) 

 
This formula expresses changes in the stiffness matrix [ ]dK  

as functions of the unmodified stiffness [ ]K  and changes in 

the modal properties, i.e. change in the mode shape { }kdU , 

plus changes in the modal frequency ( )2
0

2
1 kk ww − . Stiffness 

changes don't affect modal damping. Notice that an equation 
(17) can be written for each mode (k), which means that a set 
of (m) equations can be solved for up to (m) stiffness changes 
at a time. Hence, when the number of unknown local stiffness 
changes exceeds the number of modes for which we have 
measured changes, some sort of a searching algorithm will be 
required. This issue is considered in the numerical example to 
follow. 
 
“Small” changes: If it can be further assumed that the fault is 
slight enough so that the mode shapes don't change substan-
tially, (i.e. { }kdU  = { }0 ), then the stiffness sensitivity equa-
tion is greatly simplified: 
 

{ } [ ]{ } 2
0

2
1 kkk

t
k wwUdKU −=   modes...1=k  (18) 
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Local Stiffness Changes 
 
A stiffness change between two degrees-of-freedom, say 

iDOF  and jDOF , changes the stiffness matrix in the follow-
ing manner: 

[ ] 







−

−
=

jj

jj

idkidk

idkidk
dK

ji

j

i

DOFDOF

DOF
DOF

 

 
Equation (18) can therefore be rewritten in terms of local 
stiffness changes as: 
 

( ) 2
0

2
1

22 12
sumsum

kkijjkikjkik wdkuuuu
ji

−=−+   

 modes...1=k  (19) 
 
This formula only requires the mode shapes for the unmodi-
fied structure plus changes in the frequency of the modes. The 
modal parameters of the unmodified structure can be obtained 
either by modal testing or finite element analysis. A fault 
which causes a local stiffness change can then be detected, 
located, and quantified by simply tracking the modal frequen-
cies of the structure, and using equation (19). 
 
Mass Changes 
 
Equations (12), (14), and (15) can be combined in the 
 
same manner as above to yield a mass sensitivity equation: 
 
{ } [ ]{ } { } [ ]{ }

{ } [ ]{ }
{ } [ ]{ }
{ } [ ]{ }
( )

2
1

2
0

2
1

2

2

k

kk

k
t

k

k
t

k

k
t

k

k
t

kkk
t

kk

W

WW

dUKdU

UKdU

dUMdU

UMdUdUUdMdUU



















−−

+=+

+++

 

 
modes...1=k  (20) 

 
This formula requires both the mass [ ]M  and stiffness [ ]K  
of the unmodified structure, plus changes in the modal param-
eters due to the fault. Again, as with the stiffness, for “small” 
changes which don't affect the mode shapes substantially, the 
mass sensitivity equation becomes greatly simplified: 
 

{ } [ ]{ } ( ) 2
1

2
0

2
1 kkkk

t
k WWWUdMU −−=    

modes...1=k  (21) 
 

Damping Changes 
 
Equations (13) and (17) can be combined, together with unit 
modal mass scaling of the mode shapes, to yield a damping 
sensitivity equation: 
 
{ } [ ]{ } { } [ ]{ }

{ } [ ]{ } ( )kkk
t

k

k
t

kkk
t

kk

dddUCdU

UCdUdUUdCdUU

012

2

−=+

+++
   

modes...1=k   (22) 
 
And, for “small” changes which don't affect the mode shapes, 
this equation simplifies to: 
 
{ } [ ]{ } ( )kkk

t
k ddUdCU 012 −=      modes...1=k  (23) 

 
A 3-DOF Example 
 
The validity of stiffness sensitivity, equation (19), will be test-
ed on the 3-DOF vibratory structure shown in Figure 3. The 
mass, stiffness, and damping, as well as the modal properties 
of the structure are also given in Figure 3. 
 
Fourteen different stiffness changes were made to the 3-DOF 
structure to simulate different fault conditions. These are 
shown in Figure 4. These changes involved various combina-
tions of local stiffness changes between DOFs 1x, 2x, and 3x. 
(Since all of the DOFs are in the x-direction, only the point 
numbers are used as subscripts). The modal frequency shifts 
caused by the simulated stiffness changes are given in Figure 
5. These were obtained by solving for the modes of the modi-
fied structure with each stiffness change using the Structural 
Dynamics Modification (SDM) technique. 
 
Since modal data for three modes is available, equation (19) 
can be written for all three modes and the resulting set of 
equations solved for three stiffness changes at a time. Those 
results are shown in Figure 6. Notice that 5% and 10% chang-
es of stiffness are all satisfactorily predicted, (cases 1, 2, 4, 5, 
7, 8, & 10). The 15% to 25% changes (cases 3, 6, 9, 11, 12 & 
13) were also correctly located, although with a larger amount 
of numerical error. Case 14, with 30% overall reduction in 
stiffness, also shows a significant degree of error. 
 
As a second test, we simulated a more realistic situation where 
either all the modes of the structure have not been measured, 
or else the number of potential local stiffness changes exceeds 
the number of modes measured. In this test, we used sensitivi-
ty equations for only the first two modes of the 3-DOF struc-
ture. This meant that we could only solve for a single stiffness 
change, or two changes at a time. The two-at-a-time solutions 
are shown in Figure 7. Notice that there are a number of unre-
alistic (positive) changes, which are double underlined. 
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Figure 3 
 

Whenever an unrealistic change occurred, that local stiffness 
was eliminated from further consideration as a possible fault 
location. The summary of the search through the data in Fig-
ure 7 is shown in Figure 8. Notice that the single changes in 
cases 1 through 9 were all correctly located, and that cases 10 
through 14 encountered some difficulty. For example, in case 
10 the correct answer is found when only 12dk  and 13dk  are 

used as unknowns, but when 12dk  and 23dk  are used, 12dk  
is positive and is therefore rejected as a possible solution can-
didate.

 
 

Figure 4. Simulated Fault Cases 
 
 Stiffness change case 1 case 2 case 3 case 4 case 5 case 6 case 7 
 12dk  -5 -10 -25 0 0 0 0 

 13dk  0 0 0 -5 -10 -25 0 

 23dk  0 0 0 0 0 0 -5 
  
 Stiffness change case 8 case 9 case 10 case 11 case 12 case 13 case 14 
 12dk  0 0 -2.5 -10 0 -5 -10 

 13dk  0 0 -2.5 -10 -10 -5 -10 

 23dk  -10 -25 0 0 -10 -5 -10 
 
 
 

Figure 5. Modal Frequency Shifts ( )2
0

2
1 ff −  

 
 Mode case 1 case 2 case 3 case 4 case 5 case 6 case 7 
 1 -0.0029 -0.0060 -0.0170 -0.0398 -0.0824 -0.2305 -0.0641 
 2 -0.8963 -1.9189 -6.0000 -1.2613 -2.6614 -7.8682 -4.0426 
 3 -6.6011 -13.0753 -31.4833 -5.3656 -10.5895 -25.2347 -0.0602 
  
 Mode case  8 case 9 case 10 case 11 case 12  case 13 case 14 
 1 -0.1326 -0.3699 -0.0209 -0.0868 -0.2220 -0.1085 -0.2284 
 2 -8.0849 -20.2024 -1.0185 -4.0733 -10.6208 -6.0754 -12.1424 
 3 -0.1159 -0.2612 -6.0441 -24.1734 -10.8241 -12.1495 -24.2961 
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Figure 6. Calculated Stiffness Changes 

 
 Stiffness change  case 1 case 2  case 3 case 4 case 5 case 6 case 7 
 12dk  -5.0830 -10.3416 -27.5628 0.0816 0.3449 2.3692 0.2931 

 13dk  0.1547  0.6441 4.8380 -5.0388 -10.1677 -26.1074 -0.3578 

 23dk  -0.0984 -0.4157 -3.1280 -0.0849 -0.3525 -2.4929 -4.9553 
  
 Stiffness change  case 8 case 9 case 10 case 11 case 12 case 13 case 14 
 12dk  1.2341  8.6375 -2.4651 -9.3826 2.7835 -4.2458 -6.8347 

 13dk  -1.5068 -10.5567 -2.5427 -10.7547 -13.2646 -5.9247 -13.8808 

 23dk  -9.8106 -23.6571 0.0054 0.0960 -9.7872 -4.8781 -9.4885 
 
 
 
 

Conclusions 
 
We have verified by example that the orthogonality conditions 
for classically damped structures can be used to accurately 
locate and quantify structural faults, by simply using changes 
in measured modal frequencies. This is indeed a powerful re-
sult, which was previously pointed out by Stubbs, et.al. [4], 
[5], [6]. We derived separate sensitivity equations for mass, 
stiffness, and damping changes, and we showed that unity 
modal mass scaling of the mode shapes simplifies these for-
mulas. 
 
We found from the numerical example that changes of 10% or 
less in stiffness could be accurately predicted using the “small” 
change version of the formulas. This form assumes that the 
mode shapes don't change significantly. When a sufficient 
number of modes are monitored, even changes as large as 25% 
can still be correctly located. But with a reduced set of modes, 
which is more applicable to real world problems, the small 
change equations still did an adequate job of locating changes 
of 10% or less. 
 
When the small change assumption cannot be made, a sub-
stantially greater amount of data is required to use the sensitiv-
ity equations. Not only are the mass, stiffness, and damping 
matrices of the unmodified structure needed, but the mode 
shapes of the modified structure would also have to be meas-
ured as well. For specific applications, however, this addition-
al work may be warranted in order to obtain the increased ac-
curacy. 
 
Finally, a set of modal parameters for an unmodified (undam-
aged) structure and the SDM technique could be used to de-
termine all of the unknown mass, stiffness, and damping terms 
in the sensitivity equations (17), (20), and (22). Or, from a 

different perspective, these sensitivity equations together with 
the use of the SDM technique provide another way of estimat-
ing the mass, stiffness and damping matrices of a structure 
from measured modal data. 
 
References 
 
[1]   Wolff, T. and Richardson, M. “Fault Detection in Struc-

tures from Changes in Their Modal Parameters” Pro-
ceedings of the 7th International Modal Analysis Confer-
ence, Las Vegas, Nevada, SEM, Bethel, CT. 

 
[2]   Richardson, M. and Mannan, M.A. “Detection and Loca-

tion of Structural Cracks Using FRF Measurements” 
8th International Modal Analysis Conference, Kissimmee 
Florida, Jan 29 - Feb 1, 1990, SEM, Bethel, CT. 

 
[3]   Richardson, M. and Mannan, M.A. “Using Measured 

Modal Parameters and the Stiffness Matrix to Detect 
and Locate Structural Faults” ICSTAD Proceedings, 
Jul 29 - Aug 3, 1990, Bangalore, India. 

 
[4]   Stubbs, N., Broome, T.H., and Osegueda, R. “Non-

Destructive Construction Error Detection in Large 
Space Structures” AIAA Journal, Vol. 28, No.1,1990. 

 
[5]   Stubbs, N. and Osegueda, R. “Global Non -Destructive 

Damage Evaluation in Solids”, International Journal of 
Analytical and Experimental Modal Analysis, Vol. 5, No. 
2, April, 1990, pp.67-79. 

 
[6]   Stubbs, N. and Osegueda, R. “Global Damage Detection 

in Solids-Experimental Verification”, International 
Journal of Analytical and Experimental Modal Analysis, 
Vol. 5, No. 2, April, 1990, pp.81-97. 

  

Page 6 of 7 



IMAC IX April, 1991 
 

Figure 7. Calculated Stiffness Changes Using Only Two Modes 
 

 (unknowns 12dk  & 13dk ) 
 Stiffness change case 1 case 2 case 3 case 4 case 5 case 6 case 7 
 12dk  -5.3591 - 11.508 -36.9389 -0.1565 0.6441 -4.6251 -13.6099 

 13dk  0.0161 0.0586 0.4325 -5.1583 -10.6644 -29.6186 -7.3371 
  
 Stiffness change case 8 case 9 case 10 case 11 case 12 case 13 case 14 
 12dk  -26.2913 -57.7365 -2.4501 -9.1134 -24.6761 -4.2458 -6.8347 

 13dk  -15.3244 -43.8759 -2.5351 -10.6195 -27.0490 -5.9247 -13.8808 
 

(unknowns 12dk  & 23dk ) 
 Stiffness change case 1 case 2 case 3 case 4 case 5 case 6 case 7 
 12dk  -5.3912 -11.6247 -37.2005 10.1192 20.5997 54.3769 1.0060 

 23dk  0.0114 0.0416 03071 -3.6625 -7.5717 -21.0296 -5.2094 
  
 Stiffness change case 8 case 9 case 10 case 11 case 12 case 13 case 14 
 12dk  4.2359 29.6671 2.6001 12.0414 29.2073 7.5566 20.8167 

 23dk  -10.8805 -31.1525 -1.8000 -7.5400 -19.2052 -9.0847 -19.3440 
 

(unknowns 13dk  & 23dk ) 
 Stiffness change case 1 case 2 case 3 case 4 case 5 case 6 case 7 
 13dk  2.7063 5.8355 18.6744 -5.0798 -10.3409 -27.2968 -0.5050 

 23dk  -1.9101 -4.1017 -12.9520 -0.0558 -0.2296 -1.6485 -4.8509 
  
 Stiffness change case 8 case 9 case 10 case 1 l case 12 case 13 case 14 
 13dk  -2.1264 -14.8926 -1.3052 -6.0447 -14.6618 -3.7933 -10.4498 

 23dk  -9.3708 -20.5785 -0.8733 -3.2482 -8.7951 -6.3914 -11.9245 
 
 
 

Figure 8. Summary of Search Through Two Mode Results 
(all positive sdk set to zero) 

 
 Stiffness change case 1 case 2 case 3 case 4 case 5 case 6 case 7 
 12dk  -5.3361 -11.4246 -35.7223 0 0 0 0 

 13dk  0 0 0 -5.0798 -10.3409 -27.2968 -0.5050 

 23dk  0 0 0 -0.0558 -0 2296 -1.6485 -4.8509 
 
 Stiffness change case 8 case 9 case 10* case 11 * case 12 case 13* case 14* 
 12dk  0 0 0 0 0 0 0 

 13dk  -2.1264 -14.8926 -1.3052 -6.0447 -14.6618 -3.7933 -10.4498 

 23dk  -9.3708 -20.5785 0.8733 -3.2482 -8.7951 -6.3914 -11.9245 
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