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ABSTRACT 

In this paper, we employ the fact that all experimental vibration 
data, whether in the form of a set of FRFs or a set of output-only 
spectra, is a summation of resonance curves, each curve due to 
a mode of vibration.  We also use this superposition property of 
modes to calculate a modal participation matrix, a measure of 
the participation of each mode in the experimental vibration data 

First we show how this superposition property can be used to 
curve fit a set of FEA mode shapes to EMA mode shapes or 
ODS’s.  The modal participation matrix is calculated as a least-
squared-error solution, so any number of FEA mode shapes can 
be curve fit to any number of EMA mode shapes or ODS’s.  
Next we show how an expanded and enhanced set of FRFs, 
Cross spectra or ODS FRFs is obtained by curve fitting FEA 
mode shapes to experimental data. 

This approach in an alternative to FEA Model Updating, where 
an FEA model is modified so that its modes more closely corre-
late with experimental data. By curve fitting FEA shapes to ex-
perimental data, an extending and enhanced dynamic model is 
obtained which is more suitable for machinery & structural 
health monitoring, and for troubleshooting noise & vibration 
problems using SDM and MIMO methods.  
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INTRODUCTION 

When resonances are excited by dynamic forces in a machine, 
or in a mechanical or civil structure, response levels can far ex-
ceed deformation levels due to static loads.  Moreover, high lev-
els of resonance-assisted dynamic response can cause rapid and 
unexpected failures, or over long periods of time, structural fa-
tigue and material failure can often occur. 

A mode of vibration is a mathematical representation of a struc-
tural resonance.  Each mode is defined by three distinct numer-
ical parts; a natural frequency, a damping or decay constant, and 
a mode shape.  A mode shape represents the “standing wave 
deformation” of the structure at the natural frequency of a res-
onance. This standing wave behavior is caused when energy be-
comes trapped within the material boundaries of the structure 
and cannot readily escape. 

Modal Participation 

When the dynamic response of a structure is expressed in terms 
of modal parameters, every solution is a summation of contri-
butions from all of the modes. Another way of expressing this 
superposition property is that all modes participate in or con-
tribute to the dynamic response of a structure when it is excited 
by applied forces.  Ideally, all structures have an infinite num-
ber of modes, but in a practical sense only a few low frequency 
modes participate significantly in their response. 

If a structure’s overall dynamic response is represented by time 
waveforms, these waveforms can be decomposed into a sum-
mation of modal contributions.  Likewise, if the dynamic re-
sponse is represented by a set of frequency functions or spectra, 
the overall response can also be decomposed into a summation 
of resonance curves. 

FEA Modes 

FEA modes are solutions to a set of time domain equations of 
motion.  The equations are a statement of Newton’s second law 
[3]-[5], a force balance between internal and external forces.  
This force balance is written as a set of differential equations,  

)}t(f{)}t(x]{K[)}t(x]{C[)}t(x]{M[ =++   (1) 

where, 

=]M[ (n by n) mass matrix 
=]C[  (n by n) damping matrix 
=]K[ (n by n) stiffness matrix 
=)}t(x{   Accelerations (n-vector) 
=)}t(x{   Velocities (n-vector) 
=)}t(x{  Displacements (n-vector) 
=)}t(f{  Externally applied forces (n-vector) 

This set of differential equations describes the dynamics be-
tween n-discrete degrees-of-freedom (DOFs) of the structure.  
Equations can be created for as many DOFs of a structure as 
necessary to adequately describe its dynamic behavior. 
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Finite element analysis (FEA) is used to create the coefficient 
matrices of the differential equations (1).  The mass & stiffness 
matrices can be generated in a straightforward manner but the 
damping matrix cannot, hence it is usually left out of the FEA 
model. The equations are then solved for the analytical FEA 
mode shapes and their corresponding natural frequencies.   

FEA modes are a mathematical eigen-solution to the homoge-
neous form of equations (1), where the right-hand side is zero. 
Each natural frequency is an eigenvalue, and each mode shape 
is an eigenvector. 

EMA Modes 

EMA mode shapes are obtained by curve fitting a set of exper-
imentally derived FRFs [3]-[5]. FRF-based curve fitting is a nu-
merical process by which an analytical parametric model with 
unknown modal parameters in it is matched to experimental 
FRF data over a band of frequencies.  Equation (3) is an expres-
sion of the analytical FRF model. 

In the frequency domain, the equations of motion are written as 
algebraic equations, in a form called a MIMO model or transfer 
function model.  Like equation (1), this model also describes the 
dynamics between n-DOFs of the structure.  It contains transfer 
functions between all combinations of DOF pairs, 

)}s(F)]{s(H[)}s(X{ =  (2) 

where, 

=s  Laplace variable (complex frequency) 
=)]s(H[ (n by n) matrix of transfer functions 
=)}s(X{  Laplace transform of displacements (n-vector) 
=)}s(F{  Laplace transform of external forces (n-vector) 

These equations can be created between as many DOF pairs of 
the structure as necessary to adequately describe its dynamic be-
havior.   

When a transfer function is represented analytically as the par-
tial fraction expansion shown in equations (3) & (4) below, it is 
clear that its value at any frequency is a summation of reso-
nance curves, one for each mode of vibration.  
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where, 

=m  Number of modes of vibration 
=]r[ k  (n by n) residue matrix for the thk mode 

=kp  =ω+σ− kk j  Pole location for the thk mode 

=σk  Damping decay of the thk mode 

=ωk  Natural frequency of the thk mode 

=}u{ k  Mode shape for the thk mode (n-vector) 

=kA  Scaling constant for the thk mode 

Figure 1 shows a transfer function for a single mode of vibra-
tion, plotted over half of the s-plane. 

 
Figure 1. Transfer Function & FRF for a Single Mode in the s-plane 

Experimental FRFs 

An FRF is defined as the values of a transfer function along the 
ωj -axis in the s-plane, as shown in Figure 1.  FRFs can only be 

calculated from experimental data when all of the excitation 
forces and responses caused by them are simultaneously ac-
quired.  Equation (3) is the analytical form of an FRF that is 
used for FRF-based curve fitting of experimental data. The out-
come is an EMA pole & mode shape for each term that is used 
in the summation during curve fitting. 

Mode Shape Curve Fitting 

Equation (4) also tells us that each FRF can be represented as a 
summation of resonance curves, hence a set of FRFs can be 
decomposed into their resonance curves by curve fitting them 
one frequency at a time with a set of mode shapes.  

Output-Only Frequency Spectra 

In cases where the excitation forces are not measured and there-
fore FRFs cannot be calculated, three other types of output-only 
frequency spectra can be calculated from acquired response time 
waveforms; Fourier spectra, Cross spectra, and ODSFRFs. 

A Fourier spectrum is simply the Digital Fourier Spectrum 
(DFT) of a digital response time waveform. It is calculated with 
the FFT algorithm. A Cross spectrum is calculated between 
two simultaneously acquired responses. It is the DFT on one 
signal multiplied by the complex conjugate of the other.  An 
ODSFRF is the Auto spectrum of a roving response combined 
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with the phase of the Cross spectrum between the roving re-
sponse and a (fixed) reference response. 

When it can be assumed that these output-only measurements 
can also be represented as a summation of resonance curves, 
they too can be decomposed into a set resonance curves by curve 
fitting them one frequency at a time with a set of mode shapes.  

Operating Deflection Shape (ODS) 

When a vibration response is analytically modeled or experi-
mentally measured at two or more points & directions on a ma-
chine or structure, this data is called an Operating Deflection 
Shape (or ODS) [4]. Three different types of ODS’s are possi-
ble; time-based ODS’s, frequency-based ODS’s, and order-
based ODS’s. 

Time-Based ODS 

A time-based ODS is simply the values of two or more simulta-
neously acquired or calculated time waveforms for the same 
time value. A time-based ODS is the true overall response of 
the structure at any moment of time. 

Frequency-Based ODS 

A frequency-based ODS is the values of two or more frequency 
domain functions (FRFs or spectra) at the same frequency.  A 
frequency-based ODS is the true overall response of the struc-
ture for any frequency for which the measurement functions 
were calculated 

All frequency domain functions, (except an Auto spectrum) are 
complex valued (with magnitude & phase), so all frequency-
based ODS’s are also complex valued. 

Order-Based ODS 

In a rotating machine, the dominant forces are applied at multi-
ples of the machine running speed, called orders. An order-
based ODS is assembled from the peak values at one of the or-
der frequencies in a set of output-only frequency spectra. These 
spectra are calculated from response data that is acquired while 
the machine is running. When displayed in animation on a 3D 
model of the machine, an order-based ODS is a convenient way 
of visualizing distributed vibration levels. These distributed lev-
els can also be used for monitoring the health of the machine.   

ODS Expansion 

In a previous paper [1], it was shown how modes participate in 
an order-based ODS of a rotating machine, and how they partic-
ipate differently at different operating speeds. It another previ-
ous paper [2], it was also shown how the modal participation 
can be used to expand an order-based ODS so that it is a valid 
representation of the ODS for all DOFs of the machine, both 
measured & un-measured. 

Measurement Expansion 

In this paper the same curve fitting and expansion equations that 
were used for ODS expansion will be used to decompose and 
expand a set of FRFs, and sets of output-only Cross spectra and 
ODSFRFs. 

EXPANDING EMA MODES USING FEA MODES 

The aluminum plate shown in Figure 2 was tested using a roving 
impact hammer. During the test, a 5 by 6 grid of points was im-
pacted in the vertical direction. A tri-axil accelerometer located 
near one corner of the plate was used to measure the response 
due to the impacts. 

 
Figure 2. Impact Test of Aluminum Plate 

 
Figure 3. FRF-based Curve Fit of a Measurement 

FRFs were calculated from simultaneously acquired force & re-
sponse data, and the modal parameters of 14 EMA modes were 
extracted by curve fitting the FRFs using FRF-based curve fit-
ting. A typical curve fit is shown in Figure 3. 

Plate FEA Model 

Also, an FEA model of the plate was created by adding 180 FEA 
brick elements to the same model used to display the EMA mode 
shapes.  The first flexible body FEA mode is shown in Figure 4. 
The 30 impact points are also labeled. 
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Figure 4. FEA Mode Shape in Animation 

Modal Participation 

The bar chart of the participations of the first 14 flexible body 
FEA modes in the 14 EMA modes is shown in Figure 5.  The 
participation values reflect the different scaling of the FEA 
mode shapes versus the EMA modes. The FEA mode shapes 
were scaled to Unit Modal Masses, while the EMA mode shapes 
contained the residues (numerators) obtained from using equa-
tion (3) to curve fit the FRFs. 

 
Figure 5. Participation of FEA modes in EMA modes 

 
Figure 6. MAC Values between Expanded & Original EMA modes 

Shape Expansion 

The participation factors in Figure 5 were used to expand the 
EMA modes from 30 DOFs to 1248 DOFs, the number of FEA 
mode shape DOFs.  The MAC values between the expanded & 
original EMA mode shapes are shown in Figure 6.  The SDI 
values between the expanded EMA and the original EMA mode 
shapes are shown in Figure 7. 

Both Figures 6 & 7 indicate that the FEA mode shapes were ac-
curately curve fit to the EMA shapes.  MAC indicates the co-
linearity of each shape pair.  SDI more strongly indicates that 
each shape pair has nearly the same values for the 30 DOFs that 
are common among the original and expanded shapes. 

 
Figure 7. SDI Values between Expanded & Original EMA modes 

FRF DECOMPOSITION 

The 14 FEA mode shapes were then used to decompose the 30 
FRF measurements for the aluminum plate at each frequency. 
The values of the 30 FRFs at each frequency are a frequency-
based ODS.  The FEA mode shapes participate differently in the 
ODS at each frequency, and when the participations are plotted 
for all frequencies, they create a separate resonance curve for 
each FEA mode.  Figure 8 is a plot of the 14 resonance curves 
obtained from decomposing the 30 FRFs using the FEA modes. 

 
Figure 8. FRF Decomposition using 14 FEA modes 
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Notice that each resonance curve in Figure 8 has a single domi-
nate peak in it at the natural frequency of one of the 14 reso-
nances.  These resonance curves clearly illustrate the superposi-
tion property of modes. 

FRF RECONSTRUCTION 

A set of reconstructed FRFs can then be calculated by multi-
plying the resonance curves in Figure 8 by the FEA mode 
shapes.  Figure 9 shows a reconstructed FRF overlaid on its cor-
responding original experimental FRF.  

FRF EXPANSION 

Not only are the original 30 FRFs reconstructed, but an ex-
panded set of 1248 FRFs can be calculated using all the DOFs 
of the FEA mode shapes. This expanded set of FRFs can then 
be curve fit using FRF-based curve fitting to obtain a set of EMA 
modes with frequency, damping, and mode shapes with 1248 
DOFs in them. 

NOTE: Only FEA mode shapes are required to perform de-
composition, reconstruction, and expansion of experimental vi-
bration data. 

Decomposition, reconstruction and expansion can be applied to 
either time or frequency domain vibration data. 

 
Figure 9. Reconstructed & Experimental FRFS Overlaid 

CROSS SPECTRUM DECOMPOSITION 

The 14 FEA mode shapes were also used to decompose 30 Cross 
spectrum measurements for the aluminum plate at each fre-
quency.  Figure 10 is a plot of the participations of the 14 FEA 
modes in the Cross spectra measurements. 

CROSS SPECTRUM EXPANSION 

Figure 11 shows a reconstructed Cross spectrum overlaid on an 
original experimental Cross spectrum.  The reconstructed Cross 
spectra were calculated by multiplying the resonance curves in 
Figure 10 by the FEA mode shapes. Again, not only can the 
original 30 Cross spectra be reconstructed, but an expanded set 
of 1248 Cross spectra can be calculated using the DOFs of the 
FEA mode shapes. 

 

 
Figure 10. Cross spectra Decomposition using 14 FEA modes 

 
Figure 11. Reconstructed & Experimental Cross spectra Overlaid 

ODSFRF DECOMPOSITION 

The 14 FEA mode shapes were also used to decompose 30 ODS-
FRF measurements for the aluminum plate at each frequency.  
Figure 12 is a plot of the participations (or resonance curves) of 
the 14 FEA modes in the ODSFRF measurements. 

 
Figure 12. ODSFRF Decomposition using 14 FEA modes 
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ODSFRF EXPANSION 

Figure 12 shows a reconstructed ODSFRF overlaid on an origi-
nal experimental ODSFRF.  The reconstructed ODFRFs were 
calculated by multiplying the resonance curves in Figure 12 by 
the FEA mode shapes. Again, not only can the original ODS-
FRFs be reconstructed, but an expanded set of 1248 ODSFRFs 
can be calculated using all DOFs of the FEA mode shapes. 

 
Figure 13. Reconstructed & Experimental ODS FRFs Overlaid 

MEASUREMENT ERRORS 

One of the most useful applications of measurement curve fit-
ting and expansion using mode shapes is that experimental er-
rors are quickly spotted.  Bad measurements are found by over-
laying each reconstructed measurement on its corresponding ex-
perimental data.  One pair of each of the measurement types is 
overlaid in Figures 8, 11, & 13. 

Measurement Comparison Using MAC & SDI 

A numerical method for comparing reconstructed & experi-
mental data is to use MAC & SDI values. Both MAC & SDI 
have values between 0 & 1. When MAC is applied to pairs of 
FRFs, it is also called the Frequency Response Assurance Cri-
terion (or FRAC). 

 
Figure 14. Ordered MAC for Reconstructed & Experimental FRF Pairs 

Figure 14 is a magnitude plot of the MAC values between the 
30 reconstructed & experimental FRFs, ordered from the highest 

to lowest MAC value.  Figure 15 is an ordered magnitude plot 
of SDI values. 

Both MAC & SDI have their lowest values for the reconstructed 
& experimental FRF pair at DOF 14Z. These low values indicate a 
mismatch between the reconstructed & experimental FRFs.  The over-
laid reconstructed & experimental FRF pair is shown in Figure 16. 

 
Figure 15. Ordered SDI for Reconstructed & Experimental FRF Pairs 

 
Figure 16. Reconstructed & Experimental 14Z:5Z FRFs Overlaid 

Since all of the other FRF pairs have high MAC & SDI values (close to 
1), this is strong evidence that curve fitting the FEA mode shapes to the 
experimental data provided accurate reconstructing FRFs, except in a 
few cases like the pair shown in Figure 16.  Since the reconstructed 
FRFs were the result of a least-squared-error curve fit to all 30 exper-
imental FRFs, the strongest conclusion from the mismatch in Figure 16 
is that the experimental FRF data is in error. 

Since the aluminum plate was tested using as roving impact test, it can 
be concluded that Point 14 on the plate was impacted at a different 
point than Point 14 on the FEA model. 

CONCLUSIONS 

It was shown how the FEA mode shapes of a structure can be 
used to decompose, reconstruct, and expand a set of FRFs, Cross 
spectra, and ODSFRFs.  FRFs are normally calculated when all 
of the excitation forces causing a structure to vibrate are meas-
ured.  Cross spectra & ODSFRFs are calculated from output-
only data when the excitation forces are not measured. 

It was demonstrated in each case that these three types of exper-
imental data can be decomposed into a summation of resonance 
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curves by curve fitting a set of mode shapes to them, one fre-
quency at a time.  Then it was shown that the participations of 
the modes in the experimental data can be used to construct an 
expanded set of measurements using the DOFs of the mode 
shapes, including the DOFs that were common with the experi-
mental data. 

A key advantage of this approach is that only the mode shapes 
are required in these calculations. Accurate mode shapes can be 
easily obtained from a simple FEA model. Accurate FEA fre-
quencies that match the EMA frequencies usually require a more 
accurate FEA model, but frequencies are not required for this 
calculation. 

Another advantage of this approach is that complex data can be 
decomposed using normal modes. Modes are called normal 
when the FEA model they are derived from has no damping 
terms, and hence the mode shapes are real valued or normal.  
Normal modes can be used to expand complex mode shape or 
ODS data because the modal participation factors are complex 
valued. 

This decomposition and expansion capability is useful not only 
for creating measurements for all of the un-measured DOFs on 
a structure, but also for identifying bad measurements. The ex-
panded set of measurements can also be curve fit using FRF-
based curve fitting to obtain EMA modes with frequency, 
damping, and expanded mode shapes in them.  This EMA 
modal model can then be used for SDM and MIMO Modeling 
& Simulation studies involving un-measured DOFs of the 
structure. 

This combined use of an analytical model with experimental 
data provides a more complete characterization of the dynamic 
behavior of a structure from a relatively small number of meas-
urements.  This means that less time & expense are required to 
obtain meaningful data for use in machinery & structural health 
monitoring, or for troubleshooting noise & vibration problems. 
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