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ABSTRACT 

In a previous paper entitled Using Operating Deflection Shapes 
to Detect Unbalance in Rotating Equipment [1], we introduced 
the idea of numerically comparing currently acquired operating 
data with archived data to identify unbalances in rotating ma-
chinery. In a follow-up paper [2], we introduced a new metric 
for comparing two deflection shapes called the Shape Differ-
ence Indicator or SDI. In this paper, we introduce a refined ver-
sion of the SDI algorithm, and present new results to verify its 
utility for locating and quantifying unbalance in rotating ma-
chinery. 

We make two underlying assumptions about rotating machines; 
1) all rotating machines are excited by inherent unbalance 
forces which cannot be directly measured, and 2) order-related 
vibration levels acquired from multiple locations on a machine 
can be directly correlated with specific unbalance conditions. 
We show that by comparing current with archived ODS data, 
specific unbalance conditions can be pinpointed. 
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INTRODUCTION 

Vibration measurements have been used for decades as a means 
of determining the health of rotating machinery.  The use of vi-
bration as a health metric is analogous to a medical doctor ex-
amining your electro-cardiogram in order to ascertain the health 
of your heart. Just as a doctor looks for small abnormalities in 
the time waveforms of the electronic signals from your chest, 
vibration signals also carry tell-tale signs that mechanical 
changes have taken place in a rotating machine. 

Three of the most common health problems in rotating machine 
are unbalance of rotating parts, misalignment of rotating parts, 
and loose mountings or an overly compliant foundation, called 
soft foot. 

We believe that all three of these rotating machinery health 
problems can be detected using ODS data.  Furthermore, we will 
show that by numerical correlation of current and archived 
ODS data, (i.e. a form of data mining), small unbalance condi-
tions in a rotating machine can be detected and located. 

In the previous paper [1], four tri-axial and two uni-axial accel-
erometers where attached to the rotating machine shown in Fig-
ure 1. When the peak values at the running speed (or first order) 
of the machine were assembled together into a “deflection 
shape”, it resulted in an ODS with 14 shape components (or 
DOFs) in it. 

In this paper, only the operating data from the two tri-axial ac-
celerometers on the bearing blocks is used, thus providing order-
related ODS’s with only 6 DOFs in them.  This minimal amount 
of data was used not only to prove the viability of ODS compar-
ison as a method for locating and quantifying unbalances, but 
also to show that a minimal amount of instrumentation is re-
quired to implement this method on rotating equipment in a pro-
cess plant. 

Both MAC and SDI will be applied to the same seven cases of 
machine unbalance that were used in [1], but instead of using all 
of the operating data, only a minimal set of data from the two 
bearing blocks will be used. In addition, an extension of the SDI 
method will be introduced which increases its sensitivity to 
small differences between two shapes. 

 
Figure 1. Rotating Machine with Accelerometers Attached 

Output-Only Frequency Spectra 

In operating machinery where the excitation forces cannot be 
measured, three types of output-only frequency spectra can be 
calculated from acquired time waveforms. The three types are 
Fourier spectra, Cross spectra, and ODSFRFs. 

A Fourier spectrum is simply the Digital Fourier Spectrum 
(DFT) of a response digital time waveform. It is calculated with 
the FFT algorithm. A Cross spectrum is calculated between 
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two simultaneously acquired responses. It is the DFT on one sig-
nal multiplied by the complex conjugate of the other.  An ODS-
FRF is the Auto spectrum of a roving response combined with 
the phase of the Cross spectrum between the roving response 
and a (fixed) reference response. 

Operating Deflection Shape (ODS) 

When a vibration response is measured at two or more points & 
directions on a machine, this data can be assembled into what is 
called an Operating Deflection Shape (or ODS) [5]. Three dif-
ferent types of ODS’s are possible; time-based ODS’s, fre-
quency-based ODS’s, and order-based ODS’s. 

Time-Based ODS 

A time-based ODS is simply the values for the same time sample 
of two or more simultaneously acquired or calculated time 
waveforms. A time-based ODS contains the responses that were 
simultaneously acquired at a moment of time from the machine. 

Frequency-Based ODS 

A frequency-based ODS is the values for the same frequency 
sample of two or more frequency domain functions or spectra.  
A frequency-based ODS is the true overall response of the ma-
chine at a specific frequency sample for which the measurement 
functions were calculated. 

All frequency domain functions (except an Auto spectrum) are 
complex valued (with magnitude & phase), and consequently 
all frequency-based ODS’s are complex valued. 

Order-Based ODS 

In a rotating machine, the excitation forces are dominant at mul-
tiples of the machine running speed, called orders. An order-
based ODS is assembled from the peak values at one of the or-
der frequencies in a set of output-only frequency spectra. These 
spectra are calculated from response data that is acquired while 
the machine is running. When displayed in animation on a 3D 
model of the machine, an order-based ODS is a convenient way 
to visualize distributed relative vibration levels. 

The components of an order-based ODS can also be used for 
monitoring the health of the machine by comparing their values 
with pre-defined warning levels. Three commonly used warning 
levels are termed alert, alarm, & abort levels.   

DATA ACQUISITION FROM A ROTATING MACHINE 

For our previous paper [1], operating data was acquired from the 
machinery fault simulator shown in Figure 1.  Tri-axial accel-
erometers were attached to the top of both bearing blocks and 
the motor.  A tri-axial and 2 uni-axial accelerometers were also 
attached to the base plate.  These accelerometers provided a total 
of 14 vibration signals, which were simultaneously acquired 
with a 16 channel data acquisition system.  

A set of ODSFRFs was calculated between each of the channels 
of data and a single reference channel.  An ODSFRF is a “hy-
brid” cross-channel measurement, derived from both an Auto 
and Cross spectrum.  It is formed by combining the phase of the 

Cross spectrum between a roving and reference signal with the 
Auto spectrum (its magnitude) of the roving response signal.  
The magnitude of an ODSFRF is the Auto spectrum of the re-
sponse, which is a measure of the true magnitude of the machine 
response. The phase of an ODSFRF, which is its phase with the 
reference response, also provides a measure of the relative 
phase between its response and all other responses. 

Data was acquired from the machine at an operating speed of 
2000 RPM, under seven different unbalance conditions. A typi-
cal ODSFRF is shown in Figure 2.  It is clear that the dominant 
peaks in the ODSFRF are at the running speed and its higher 
orders (4000, 6000 RPM, etc.). 

Order-based ODS’s were created by saving the peak values in 
the ODSFRFs at each of the first three orders. 

NOTE: An order-based ODS is the peak values from a set of 
ODSFRFs at one of the machine orders.  

 
Figure 2. ODSFRF Showing Peaks at Machine Orders. 

 
Figure 3. Unbalance Weights Attached to Rotors 
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SEVEN UNBALANCE CASES 

Vibration data was acquired from the machine when it was con-
sidered to be in balance (the baseline condition), and under 
seven different unbalance conditions. Unbalance was created by 
adding weights to either or both of the rotors, as indicated in 
Figure 3.   Data was acquired for each of the following unbal-
ance conditions;  

1. Small unbalance (11.25 grams) - Inboard rotor 
2. Small unbalance - Outboard rotor 
3. Large unbalance (22.5 grams) - Inboard rotor 
4. Large unbalance - Outboard rotor 
5. Two large unbalances - 0 degrees apart 
6. Two large unbalances - 90 degrees apart 
7. Two large unbalances - 180 degrees apart 

For case 1, a small unbalance weight (11.25 grams) was added 
only to the inboard rotor, closest to the motor.  For case 2, the 
same small unbalance weight was added only to the outboard 
rotor, farthest from the motor.  Cases 3 & 4 were the same as 
cases 1 & 2, but a larger unbalance weight (22.5 grams) was 
used.  

In cases 5, 6 & 7, the same large unbalance weight was added to 
both rotors, but the weights were added in different positions.  
In case 5, they were added at the same radial position on both 
rotors (with 0 degrees difference between them).  In case 6, they 
were added at 90 degrees apart from one another, and in case 7 
they were added at 180 degrees apart.  

ODS data for the unbalance cases previously used [1] was also 
used for this paper, but only data from the accelerometers on the 
two bearing blocks was used. This will illustrate the use of a 
minimal set of data for detecting and identifying each of the 
seven cases. 

MODAL ASSURANCE CRITERION (MAC)  

One might ask, Isn’t the Modal Assurance Criterion (MAC) 
used for numerically correlating two shapes? Why introduce 
another correlation method?  MAC [3], [4] is useful for com-
paring two shapes but it has two limitations, 

1. It only indicates the co-linearity of two shapes, not their 
difference. 

2. It can only be applied to shapes with two or more shape 
components. Its value for two scalars is always 1. 

MAC is calculated with the formula, 

MAC = �{u}h{v}�
2

{u}h{u}{v}h{v}
   (1) 

{u}= complex comparison shape (m-vector) 
{v}= complex baseline shape (m-vector) 
m = number of matching DOFs between the shapes 
h - denotes the transposed conjugate vector 

MAC measures the co-linearity of two shapes, so if they lie to-
gether on the same straight line, MAC = 1.  Another way of 
understanding MAC is that it is the dot product of the two 
shapes squared, normalized by each of their magnitudes 
squared.  MAC is not sensitive to the difference in the actual 
values of the shapes themselves, only to the difference in their 
"shapes".  If two shapes do not lie on the same straight line, 
then MAC < 1.   

MAC does not answer the question, "How different are the 
shape component values of one shape from another?"  To an-
swer that question, a new measure of the difference between two 
shapes was introduced in [2].  SDI has proven to be more useful 
than MAC for comparing ODS’s to detect machine faults. 

SHAPE DIFFERENCE INDICATOR (SDI) 

The Shape Difference Indicator is defined with the formula, 
 

SDI= �1- ‖{u}-{v}‖2

{u}h{u}+{v}h{v}
�
2
   (2) 

 
or 

SDI= � 2 real({u}h{v})
{u}h{u}+{v}h{v}

�
2

   (3) 

 
real�{u}h{v}� = the real part of the vector dot product 
{u}= complex comparison shape (m-vector) 
{v}= complex baseline shape (m-vector) 
m = number of matching DOFs between the shapes 
h - denotes the transposed conjugate vector 

SDI values also range between 0 & 1.  If two shapes have iden-
tical shape components, SDI = 1.  If two shapes have different 
shape components, SDI < 1.  Several examples illustrate typical 
SDI values. 

• If {v} = {u}, SDI = 1 
• If {v} = 0 𝑜𝑜𝑜𝑜 {u} = 0, SDI = 0 
• If {v} = 2{u}, SDI = 0.64 
• If {v} = 10{u}, SDI = 0.04 

APPLYING MAC & SDI TO ORDER-BASED ODS’S 

The following Figures 4 through 9 are bar charts of the MAC 
and SDI values between order-based ODS pairs for the baseline 
and seven unbalance cases. 

Each bar chart depicts an 8 by 8 matrix of MAC or SDI values. 
Each diagonal bar of value 1 is the MAC or SDI value of each 
ODS correlated with itself.  Each bar chart also shows the worst 
case of a MAC or SDI value in the box at the top. Shape #1 is 
the baseline (balanced) case. Shapes #2 through #8 are the seven 
unbalance cases in order. 

A MAC or SDI value less than 1 indicates that a pair of ODS’s 
are different from one another. A bar value close to zero is a 
clear indication that two ODS’s are different. 
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NOTE: If all of the off-diagonal bars in these bar charts are 
close to zero, the metric can be used to uniquely identify each 
unbalance condition. 

 

Figure 4. MAC values (First Order) 

 
Figure 5. SDI Values (First Order) 

 
Figure 6. MAC Values (Second Order) 

 
Figure 7. SDI Values (Second Order) 

 
Figure 8. MAC Values (Third Order) 

 
Figure 9. SDI Values (Third Order) 

Figure 4 shows the MAC values for the first order ODS data.  
Many of the MAC values for the off-diagonal pairs are close to 
1. This bar chart shows that MAC values cannot be used on first 
order ODS data to uniquely identify each unbalance case. 
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Figure 5 shows the SDI values for the first-order ODS data. 
Overall, these values are closer to zero than the MAC values, 
but the ODS’s for the worst case pair (cases 2 & 7) are still 
closely correlated (SDI = 0.93). Hence, SDI values cannot be 
used on first order ODS data to uniquely identify each unbalance 
case 

Figure 6 is the MAC values for the second order ODS’s. This 
bar chart still shows that the MAC values cannot be used on sec-
ond order ODS data to uniquely identify each unbalance case. 
Figure 7 is the SDI values for the second order ODS’s.  It shows 
that the worst case pair (cases 4 & 6) has an SDI = 0.88. This 
bar chart also shows that SDI values cannot be used on second 
order ODS data to uniquely identify each unbalance case. 

Figure 8 shows that the worst case pair (cases 3 & 6) has a MAC 
= 0.93 for the third order ODS’s. Even though overall these 
MAC values are closer to zero than for the first and second or-
ders, these values still cannot be used to uniquely identify each 
unbalance case.  Figure 9 shows that a worst case pair (cases 3 
& 6) has an SDI = 0.85.  Again SDI cannot be used on third 
order ODS data to uniquely identify each unbalance case.   

Even though SDI is a stronger indicator of shape differences 
than MAC, it would still be an unreliable method for discrimi-
nating among the seven unbalance cases and the balanced case, 
regardless of which order of ODS data were used. 

SDI SENSITIVITY 

Figure 10 is a plot of three SDI curves for scalar values of {u} 
& {v}.  In general, {u} & {v} are vectors, but in this case each 
vector only has one real component. Three curves are plotted for 
the baseline shape {v} = 1, 10, 100. 

 
Figure 10. SDI Values for Scalars {u} & {v} 

These SDI curves have two unique properties, 

1. When {u} = 0, SDI = 0 
2. Each SDI curve flattens out as it transitions from zero to its 

peak value (SDI =1), which occurs when  {u} = {v} 

Another way of interpreting this is that the sensitivity of SDI 
becomes greater as {v} approaches zero.  In order to increase 
the sensitivity of SDI, the vectors {u} & {v} can be replaced 
with the following vectors before calculating their SDI value. 

{v} = {sensitivity} where (sensitivity > 0) 

{u} = {u} – {v} + {v} 

Replacing {u} & {v} with {u} & {v} makes the SDI calculation 
more sensitive to the difference between {u} & {v}. 

In order to distinguish the difference between a pair of vectors, 
a sensitivity should be chosen which drives their SDI value as 
close to zero as possible. 

The following Figures 11, 12, & 13 contain bar charts of the SDI 
values for the same order-based ODS data as Figures 5, 7, & 9, 
but with sensitivity = 0.1. 

 
Figure 11. SDI Values (First Order) 

 
Figure 12. SDI Values (Second Order) 

Figures 11, 12, & 13 are the graphic evidence that the SDI algo-
rithm, with modifications to a pair of order-based ODS’s to 
make it more sensitive to their difference, can be used as a dis-
criminator between different unbalance conditions in a rotating 
machine. This algorithm has been implemented in the ME’scope 
software, a product of Vibrant Technology.   
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Figure 13. SDI Values (Third Order) 

FAULT CORRELATION TOOLS (FaCTs) 

When SDI is used together with an archival database, where ar-
chived ODS’s have been associated beforehand with known un-
balance conditions, SDI bars can be used to identify specific un-
balance conditions. This capability has been branded as 
FaCTs™, an acronym for Fault Correlation Tools, in the 
ME’scope software. 

FaCTs can be used in a number of ways as part of the post-pro-
cessing software in an online machine health monitoring system.  
In addition to correlating current ODS data with archived data 
that has been associated with a known unbalance condition, 
FaCTs can also be used to graphically indicate any change in a 
machine operating condition by providing a real-time compari-
son of current versus baseline ODS data. 

FaCTs can also be used as a pass/fail indicator as part of a qual-
ification testing system where vibration data, or any other type 
of engineering data, is acquired from the machine or test article.  
Any type of engineering data can be added as components to a 
shape vector, and consequently can be used in an SDI calcula-
tion as part of FaCTs. 

CONCLUSION 

The purpose of this paper was to show that ODS data taken from 
the bearing blocks on a rotating machine can be post-processed 
to detect and identify various unbalance conditions of the ma-
chine. The idea behind this approach is to correlate currently ac-
quired data with data that has been previously archived in a data 
base, and which has been associated with particular unbalance 
conditions. 

We applied two different measures of shape correlation to the 
ODS data, MAC & SDI.  Both measures indicate the likeness of 
a pair of shapes by giving values between 0 & 1.  A value of 1 
means that the shapes are the same, and a value less than 1 
means that they are different. Both measures could be referred 
to as correlation coefficients. 

MAC indicates whether or not two shapes are co-linear, lying 
together on the same straight line. SDI measures the true differ-
ence between two shapes. When both measures were applied to 
the bearing block ODS data, the SDI bar charts showed that the 
shape difference was stronger than shape co-linearity for dis-
criminating between the unbalance cases. However, even SDI 
didn’t provide a clear distinction between all cases. 

Therefore, it was also shown that the sensitivity of SDI can be 
increased by inputting two modified shapes to the SDI algo-
rithm which are derived from the original shapes.  By increasing 
its sensitivity, SDI was able to clearly discriminate between all 
of the unbalance conditions and the balanced condition of the 
rotating machine. 
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